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Abstract 

Due to the heterogeneous nature of granular soils and the involvement of many effective parameters in the geotechnical 
behavior of soil-foundation systems, the accurate prediction of shallow foundation settlements on cohesionless soils is a 
complex engineering problem. In this study, three new evolutionary-based techniques, including evolutionary polynomial 
regression (EPR), classical genetic programming (GP), and gene expression programming (GEP), are utilized to obtain more 
accurate predictive settlement models. The models are developed using a large databank of standard penetration test (SPT)-
based case histories. The values obtained from the new models are compared with those of the most precise models that have 
been previously proposed by researchers. The results show that the new EPR and GP-based models are able to predict the 
foundation settlement on cohesionless soils under the described conditions with R2 values higher than 87%. The artificial 
neural networks (ANNs) and genetic programming (GP)-based models obtained from the literature, have R2 values of about 
85% and 83%, respectively which are higher than 80% for the GEP-based model. A subsequent comprehensive parametric 
study is further carried out to evaluate the sensitivity of the foundation settlement to the effective input parameters. The 
comparison results prove that the new EPR and GP-based models are the most accurate models. In this study, the feasibility of 
the EPR, GP and GEP approaches in finding solutions for highly nonlinear problems such as settlement of shallow 
foundations on granular soils is also clearly illustrated. The developed models are quite simple and straightforward and can 
be used reliably for routine design practice. 

Keywords: Shallow foundations, Settlement prediction, Evolutionary polynomial regression, Genetic programming, Gene 
expression programming, Cohesionless soils. 

1. Introduction 

Shallow foundations are one of the most common 
structures for transferring loads to the near-surface ground. 
Generally, there are two main criteria that must be considered 
in the design process of shallow foundations, including the 
soil-bearing capacity and foundation settlement. However, the 
design of shallow foundations on cohesionless soils is 
generally more controlled by settlement than bearing capacity 
[1]. Thus, accurate settlement prediction is of paramount 
importance. The settlement of shallow foundations on 
cohesionless soils usually occurs because of the following 
two main reasons: (i) soil compressibility due to induced 
applied stresses and consequent rearrangement of soil 
particles and (ii) lateral deformation of the foundation subsoil 
because of the tendency of soil to move away from 
underneath the foundation. 
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Poulus listed the following major causes of shallow 
foundation settlement [2]: 

(i) Static loads imposed by the weight of structures. 
(ii) Dynamic loads produced by machinery, 

earthquakes, moving loads, etc. 
(iii) Changes in the moisture content of soils due to 

various natural phenomena, such as seasonal fluctuation in 
the water table. 

(iv) Further effects of nearby construction projects 
that mainly result from adjacent excavation, pile driving 
and dewatering. 

In this paper, the first case will be addressed. 
Predicting the settlement of a shallow foundation on 
cohesionless soils due to static loads is considered to be a 
compound geotechnical problem because it involves some 
uncertainties. The stress-strain history of subsoil, 
compressibility potential of soil, real distribution of 
applied stresses, difficulty in obtaining undisturbed 
samples of cohesionless soil, intricacy in forecasting the 
real magnitude of the imposed loads and heterogeneous 
nature of the soils are the main factors of the uncertainties. 

The estimation of shallow foundation settlement on 
cohesionless soils has been a topic of research that 
attracted many investigators and several estimation 
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methods have been proposed over the years. The most 
widely used methods include those proposed by Terzaghi 
and Peck [3], Meyerhof [4], Bazaraa [5], Schmertmann 
[1], Schultze and Sherif [6], Schmertmann et al. [7] and 
Burland and Burbidge [8]. Comprehensive studies of 
existing methods (e.g., Jorden [9]; Jeyapalan and Boehm 
[10]; Gifford et al. [11]; Tan and Duncan [12]; Wahls [13]; 
Sivakugan et al. [14]) indicate inconsistencies in the 
settlements predicted by these methods; therefore, more 
accurate and consistent methods are still needed. For 
instance, a comparison between the observed and 
predicted settlements according to the Terzaghi and Peck 
method for 79 cases is shown in Figure 1 (Sivakugan et al. 
[14]). This figure demonstrates that this method involves a 
safety factor of approximately 2.2 for most of the cases, 
which leads to a conservative design. 

 

 
Fig. 1 Comparison of predicted with observed settlements for 79 
foundations based on Terzaghi and Peck method (Sivakugan et 

al., 1998) 
 
More recently, the feasibility of using soft computing 

to more accurately and consistently predict the settlement 
of shallow foundations on cohesionless soils has been 
investigated. For instance, Shahin et al. [15] applied 
artificial neural networks (ANNs), which were shown to 
have great potential in predicting the complex, nonlinear 
behavior of shallow footings on sandy soils. In addition, 
Rezania and Javadi [16] proposed the use of genetic 
programming (GP), and Samui and Sitharam [17] 
suggested the least squares support vector machines 
(LSSVM). 

The current paper represents an attempt to obtain an 
accurate settlement prediction of shallow foundations on 
cohesionless soils using a new evolutionary-based 
approach, i.e., evolutionary polynomial regression (EPR). 
In addition, two new GP-based modeling techniques 
including the classical GP model and gene expression 
programming (GEP) are developed to compare with the 
new EPR-based formula. A reliable database gathered 
from different case histories was utilized to develop the 
models. The settlements predicted from the proposed 
formulations were compared with those previously 
obtained from the soft-computing techniques. A 

comparative parametric study confirmed the robustness of 
the proposed numerical correlations. 

2. Evolutionary Polynomial Regression (EPR) 

Soft computing techniques have been developed 
rapidly during recent years. They have been applied to 
different civil engineering complicated problems such as 
predicting the behavior of plastic pipes embedded in 
reinforced sand [18], predicting the creep effects in 
masonry structures [19, 20], determining the deviatoric 
stress of calcareous sands [21], and predicting the 
pavement condition index (PCI) [22]. 

Recenetly, Giustolisi and Savic [23] developed a novel 
data-driven method, i.e., evolutionary polynomial 
regression (EPR), based on evolutionary computing that 
combines the best features of conventional numerical 
regression techniques with genetic programming (GP) and 
symbolic regression techniques. One of the most useful 
applications of EPR is finding the best model to fit 
observed data (e.g., fitting a line or curve through a set of 
points). Evaluation of liquefaction potential based on cone 
penetration test (CPT) results [24], assessment of 
earthquake-induced soil liquefaction and lateral 
displacement [25] and prediction of total sediment load of 
rivers [26] are some instances of EPR applications in civil 
engineering. 

A physical system with an output y is based on a set of 
input variables X and parameters θ can be formulated 
mathematically as follows: 

 
)θ,X(Fy   (1) 

 
Where F is a function of n-dimensional space in which 

n is the number of inputs. Artificial neural networks 
(ANNs) and genetic programming (GP) are two well-
known methods that try to reconstruct the function F using 
an input/output dataset. GP generates a population of terms 
for F, coded in tree-based structures of variable size, and 
explores the best format for F based on a fitness function. 
On the other hand, ANNs focus on mapping F rather than 
finding a reasonable structure for it. GP considers the 
functional relationships between the variables X. However, 
ANNs function on a lower level of knowledge of the 
functional relationships between X [23]. 

Both methods (i.e., ANNs and GP) are powerful 
techniques with great potential in modeling the nonlinear 
complex problems that are difficult to model with 
conventional methods, but they have their inherent negative 
aspects. The main drawbacks are as follows [23, 24]: 

(i) GP uses an evolutionary approach to determine a 
mathematical form of F, but the parameter values (i.e., 
vector θ) are generated as nonadjustable constants, 
referred to as ephemeral random constants. Therefore, the 
constants do not necessarily represent optimal values, and 
good structures of F may be missed in the modeling 
process because of unsuitable constants. 

(ii) Bloating may occur within GP processes. 
Bloating causes an excessive growth of the GP-based 
expressions without any effective advance in its overall 
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performance. Therefore, bloating can cause the 
evolutionary process of GP to be relatively inefficient. 

(iii) The main drawback of the ANNs is the difficulty 
in determining the network structure due to its great 
complexity because it represents knowledge in terms of a 
weight matrix together and bias terms, which are not 
accessible or easy to work with. 

(iv) The risk of becoming stuck in local minima for 
the training algorithm is the other considerable 
disadvantage of the ANN approach. 

Compared with the other data‐driven and classical 
regression techniques, EPR is a hybrid data-driven 
technique that attempts to overcome some of the 
abovementioned shortcomings. The most beneficial 
features of EPR include: 

(i) Needs a small number of constants to be 
estimated, which helps avoid over‐fitting problems, 
especially for small data sets. 

(ii) Uses linear parameter estimation, ensuring that a 
unique solution is found when the inverse problem is well 
conditioned. 

(iii) Can feature automatic model construction, which 
avoids the need to preselect the functional form and the 
number of parameters in the target model. 

(iv) Can perform both linear and nonlinear analyses in 
a single iteration. 

EPR can be expressed in the following general 
mathematical form [23]: 
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Where y is the estimated vector of the process outputs; 

F is the function generated by the process; X is a matrix of 
input variables; f is a function defined by the user; aj is a 
constant value; and n is the number of terms of the target 
expression. 

EPR has two major stages in the process of 
constructing a symbolic regression model. The first stage 
is the identification of the main structure, and the second is 
the parameter estimation. EPR first uses the standard 
genetic algorithm (GA) strategy to search for the best form 
of the model structure (i.e., functional form of the main 
expression). In the second stage, EPR performs a least-
square regression to find the adjustable parameters. In 
other words, it estimates function parameters based on a 
linear optimization technique. As stated by Giustolisi and 
Savic [23], the two abovementioned steps represent the 
simplest relation between the symbolic essence and 
numerical regressive nature of EPR (i.e., functional form 
and parameters, respectively). More explanations of the 
technique can be found in Giustolisi and Savic [23, 27] 
and Rezania et al. [28]. 

3. Development of EPR-Based Settlement Model 

3.1. Model inputs and outputs 

The recognition of the effective parameters in the 
settlement value of a shallow foundation on cohesionless 
soils has a direct impact on the precision of a predictive 
numerical model and strongly supports the technical 
acceptance of the model. In most important traditional 
methods, the foundation width (B), foundation net applied 
pressure (q), foundation embedment ratio (i.e., ratio of 
embedment dapth to foundation width, Df/B) and soil 
compressibility within the depth of influence of the 
foundation are the main parameters affecting the 
foundation settlement [15, 29]. Also, the effect of 
foundation geometry is an important parameter that can be 
considered by introducing the ratio of the length to width 
(L/B) into the model development parameters. Burland and 
Burbidge [8] stated that there are two other parameters 
(i.e., the thickness of soil layer beneath the foundation and 
depth of groundwater) that have minor degrees of 
importance. Due to the lack of sufficient data regarding the 
thickness of soil layer in the available database, this 
parameter was not considered in the current study. It was 
also assumed that the effect of the water table has already 
been reflected in the measured SPT blow count, as 
proposed by Meyerhof [4]. In addition, the length-to-width 
ratio (L/B) of circular footings is considered to be equal to 
unity. It should be noted that more information about field 
condition parameters reflecting ground and testing 
conditions can surely help researchers to propose more 
reliable models in future. 

The database used for the EPR model development 
includes 189 individual case histories; 5 cases were 
reported by Bazaraa [5], 22 cases by Burbidge [30], 125 
cases by Burland and Burbidge [8], one case by Picornell 
and Del Monte [31], 30 cases by Wahls [13], 2 cases by 
Maugeri et al. [32] and 4 cases by Briaud and Gibbens 
[33]. The database covers a wide range of cohesionless 
soil and foundation properties. 

3.2. Data division 

As a common practice, the data were divided into two 
subsets; training (i.e., calibration) and testing (i.e., 
validation). The training subset is mainly used to generate 
the model, and the testing subset is used to examine the 
performance of the constructed model. In this study, 152 
cases (80%) were used for the training process and the 
other 37 cases (20%) are used to confirm the validity of 
the trained EPR-based model. 

Studies by Shahin et al. [34] and Tokar and Johnson 
[35] revealed that the way the data are divided has a 
noteworthy impact on the obtained results. In this study, 
the statistically consistent method described in detail by 
Shahin et al. [34] was used. The data were divided in such 
a way that the main statistical parameters of the training 
and testing subsets (i.e., mean, maximum, minimum, and 
standard deviation) became as close to each other as 
possible and accordingly represent similar statistical 
populations. The statistical properties of the training and 
testing subsets are summarized in Table 1. 
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Table 1 Statistical characteristics of training and testing subsets 

Parameter Dimension Subset 
Statistical characteristics 

Mean Standard Deviation Maximum Minimum 

B m 
Training 8.6 10.2 60.0 0.8 
Testing 9.4 10.1 41.2 0.9 

qnet kPa 
Training 186.9 125.6 697.0 18.3 
Testing 188.0 114.6 575.0 33.0 

SPT-N - 
Training 24.6 13.4 60.0 4.0 
Testing 24.3 14.2 55.0 4.0 

L/B - 
Training 2.2 1.8 10.6 1.0 
Testing 2.1 1.8 8.1 1.0 

Df/B - 
Training 0.5 0.6 3.4 0.0 
Testing 0.6 0.6 3.0 0.0 

Smeasured mm 
Training 20.5 27.0 121.0 0.6 
Testing 20.4 25.2 120.0 1.3 

 
3.3. Initial settings and model optimization 

In this study, the EPR toolbox version 2.SA was used 
to model the shallow foundation settlement in granular 
soils. Giustolisi and Savic [23] developed this software 
based on the homonymous modeling methodology using a 
hybrid evolutionary paradigm. In the development process 
of an EPR-based model, some initial settings and a set of 
constraints can be devised to optimize the constructed 
model by considering some properties such as equation 
length, set of allowable functions, number of terms, set of 
allowable exponents, and number of generations. In this 
study, based on the results of different analyses, the 
maximum number of generations and number of terms 
were set equal to 14 and 10, respectively. For simplicity 
with respect to the evolved models, the set of allowable 
exponents was ±4, ±3.5, ±3, …, ±0.5 and 0. Other initial 
parameters were set to their recommended default values 
in the EPR toolbox. Complete descriptions about the 
effective initial parameters can be found in Giustolisi and 
Savic [23, 27]. 

After model development, statistical analyses were 
performed to measure the model performance. The 
mathematical definitions of the statistical criteria used 
include the coefficient of determination (R2), root mean 
square error (RMSE) and mean absolute error (MAE) (see 
Table 2). 

 
Table 2 Statistical criteria used for evaluation of models 

Performance index Mathematical Definition 

Coefficient of determination 
(R2) 
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3.4. EPR-based settlement model 

To obtain simple and straightforward formulae, 
numerous attempts with various initial settings were 
executed and performance of the statistical analyses was 
evaluated. The best model was selected according to the 
best statistical properties and model simplicity. Equation 
(3) is the optimum obtained EPR-based formula after 
simplification. 
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Where S is the predicted settlement (mm), B is the 

foundation width (m), L is the foundation length (m), Df is 
the foundation embedment depth (m), q is the foundation 
net applied pressure (kPa) and N is the average SPT below 
count. Equation (3) describes the settlement as a function 
of the most effective factors obtained from the main 
properties of the soil-foundation system. It should be noted 
that the proposed formula is only valid for the ranges 
shown in Table 1. 

 

 
Fig. 2 Comparison of measured versus predicted settlements 

obtained from the EPR-based model 
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Figure 2 shows the measured versus predicted values 
obtained from Equation (3), and values of R2, RMSE and 
MAE are also illustrated in the figure. It can be seen that 
the relatively high performance and accuracy of the EPR-
based model in predicting the case histories of the 
measured settlements is clearly illustrated. 

4. Development of GP- and GEP-Based Settlement 
Models 

4.1. Overview on genetic programming 

The main advantage of GP-based methods over simple 
regression and other soft computing techniques is their 
ability to generate predictive formulae without making any 
assumption about the basic form of the existing 
relationship [36]. The Darwinian natural selection 
principle is the basis of GP-based algorithms, which was 
used by Koza [37] to develop the classical GP method in 
the late 1980s. The classical GP method is also called the 
tree-based GP [37] or the traditional GP method [36]. 

In this study, two new GP-based models were 
developed to predict the foundation settlement of 
cohesionless soils using classical GP and GEP. GP is 
sufficiently well known among geotechnical researchers, 
and several problems have been solved using this 
technique in recent years (e.g., Baziar et al. [36]; Kermani 
et al. [38]; Rezania and Javadi [16]; Teodorescu [39]). Full 
description of the GP technique is beyond the scope of this 
paper and can be found in many publications (e.g., Koza 
[37]; Banzhaf et al. [40]). 

Gene expression programming (GEP) is a branch of 
GP that was first invented by Ferreira [41]. In fact, this 
method is a natural development of genetic algorithms 
(GAs) and genetic programming (GP). Similar to the 
classical GP, there are different configuration parameters 
in GEP that can be used to optimize the target model and 
minimize the error levels: function set, terminal set, fitness 
function, control parameters, and termination condition. 
The function set contains the basic mathematical operators 
and Boolean logical functions (or any other user-defined 
function), while the terminal set contains the numerical 
constants. The fitness function is mainly defined to 
determine the fitness of each individual; this function is 
based on the minimization of the error. Control parameters 
and termination condition apply the necessary 
specifications to control the process of modeling. 

The main difference between the classical GP and GEP 
lies in the representation of the models. In GEP, the 
models are created with a fixed length of character strings 
and are further described as computer solutions in tree-
based structures that are named expression trees (ETs) 
[42]. On the other hand, in the classical GP, the created 
models are represented in tree-based structures and 
expressed in a functional programming language [37, 42]. 
Detailed description of the GEP technique can be found in 
Ferreira [41, 43], Gandomi et al. [42], Mollahasani et al. 
[44] and Alavi and Gandomi [45]. 

 

4.2. Model inputs and outputs 

The input and output parameters of the GP- and GEP-
based models were the same as those used to develop the 
EPR-based model, and the same data division was also used. 

4.3. Initial settings and model optimization 

In this study, a new GP code named GPTIPS was 
utilized to develop a predictive model based on GP [46]. In 
GPTIPS, it is possible to create a set of restrictions to 
avoid bloating. Bloating is the excessive growth of a 
model without any considerable improvement in the 
fitness value. An effective technique called lexicographic 
tournament selection was used in the evolutionary process 
of model development by GPTIPS to control the bloating 
of the model [47]. Table 3 shows the range of initial 
parameters used in the GP realizations, and other initial 
parameters were considered to be equal to their 
recommended default values according to Searson [48]. It 
should be noted that in this study the fitness function used 
for the classical GP-based modeling was the root mean 
square error (RMSE). 

 
Table 3 Range of initially defined parameters in GP 

Parameter Range 

Population size 20–10000 

Number of generations 100–5000 

Maximum number of nodes 10–100 

Maximum depth of trees 3–50 
Numerical constants lower 
bound 

–10 

Numerical constants upper 
bound 

+10 

Function set + , – , × , ÷ 

 
For development of the GEP-based model, 

GeneXproTools [49] was used. Similar to GP modeling, 
RMSE was used as the fitness function. Other functions 
such as the mean absolute error (MAE) and mean square 
error (MSE) were also tried but the best results were 
obtained with the RMSE. Table 4 illustrates the range of 
initial parameters used in GEP modeling.  The other 
parameters of GEP-based modeling were set to their 
default values according to the GEPSOFT [49]. 

 
Table 4 Range of initially defined parameters in GEP 

Parameter Settings 

Number of generations 100–100000 

Number of chromosomes 10–50 

Number of genes 1–5 

Number of constants per gene 1–8 

Numerical constants lower bound –20 

Numerical constants upper bound +20 

Function set 
+ , – , × , ÷ , power , 

ln(x) 
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4.4. GP and GEP model formulations 

In an attempt to obtain the optimal GP- and GEP-based 
models, numerous realizations were performed with 
different initial settings and the best models were selected 
according to their R2, RMSE and MAE. Ultimately, the 
following models were found to be optimal and their 
predictive abilities are shown in Figures 3 and 4. 
Equations (4) and (5) represent the developed GP- and 
GEP-based formulae, respectively. 
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Fig. 3 Comparison of settlements measured and predicted by the 

GP-based model 

Fig. 4 Comparison of settlements measured and predicted by the 
GEP-based model 

By comparing the formulations in equations (3–5), it 
can be seen that the GEP model (i.e., equation 5) is 
simpler than both the EPR model (i.e., equation (3)) and 
GEP model (i.e., equation 4).  However, it can also be seen 
from Figures 2–4 that the performance of the GEP model 
is worse with less R2 and higher RMSE and MAE, and 
much more scatter around the line of equality between the 
measured and predicted settlements. It should be noted that 
the proposed formulae are only valid for the ranges shown 
in Table 1. 

5. Comparison of EPR, GP and GEP Models With 
Other Available Models 

In this section, the developed EPR, GP and GEP 
settlement prediction models are compared with other 
available soft computing models, including the ANN 
model developed by Shahin et al. [15, 29] and the GP 
model developed by Rezania and Javadi [16]. It should be 
noted that the comparison between the soft computing 
settlement prediction models and traditional methods such 
as those of Meyerhof [4], Schultze and Sherif [6] and 
Schmertmann et al. [7] was investigated in previous 
studies by Shahin et al. [15] and Rezania and Javadi [16]. 

5.1. Statistical analyses 

The concurrent consideration of statistical criteria 
including R2, RMSE, and MAE data is a reasonable 
method for comparing the models. Table 5 shows the 
statistical performance of the models developed in this 
work and the ANN- and GP-based models developed in 
previous studies. It can be seen that the EPR- and GP-
based models are the most precise models in predicting the 
settlement of shallow foundations on cohesionless soils. It 
can also be seen that the accuracy of the ANN model 
proposed by Shahin et al. [29] and the GP model 
developed by Rezania and Javadi [16] is high but not as 
high as the EPR and GP models of the current study. On 
the other hand, the statistical results show that the 
performance of the GEP model is considerably lower than 
that of all other models. Overall, the statistical results 
indicate that the application of EPR and GP methods 
provides a more potential improvement over the 
previously developed models. Considering these findings, 
it can be concluded that the new EPR- and GP-based 
models are the most robust models. 
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Table 5 Statistical performances of the proposed models and the previously published ones 

Ref. Method R2 RMSE MAE 

Shahin et al. (2002a) ANN 0.851 10.25 7.14 

Rezania and Javadi (2007) GP 0.826 11.07 6.77 

Current study EPR 0.871 9.53 6.88 

Current study GP 0.878 9.27 6.03 

Current study GEP 0.799 11.89 7.73 
 

5.2. Parametric study 

For further verification of the predictive ability of the 
models developed in this study and for more comparison 
with previously developed models by Shahin et al. [29] 
and Rezania and Javadi [16], a parametric study was 
conducted to investigate the effect of the model inputs on 
predicted settlements. The parametric study verifies 
whether or not the behavior of the predictive models 
matches that observed in the experimental investigation. 
Therefore, the impact of varying each input parameter was 
studied while the other input parameters were maintained 
constant at their mean values according to the available 
database. Figures 5-9 illustrate the results of this 
parametric study in which the sensitivity of the model 
output (i.e., settlement) to changes in each input parameter 
is illustrated. 
 
 
 
 

 
Fig. 5 Results of parametric study: effect of foundation width 

 

 
Fig. 6 Results of parametric study: effect of foundation net 

applied pressure 
 

 
Fig. 7 Results of parametric study: effect of average SPT blow 

count 
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Fig. 8 Results of parametric study: effect of foundation geometry 

(the ratio of length to width, L/B) 
 

 
Fig. 9 Results of parametric study: effect of foundation 

embedment ratio 
 
It can be seen from Figures 5-9 that all models were able 
to capture the underlying physical meaning of settlement 
problem and experimental investigation. For example, it 
was found in all models that the foundation settlement 
increases with increasing the foundation width, foundation 
geometry and net applied pressure, as one would expect. 
On the other hand, the settlement decreases with 
increasing the foundation embedment ratio and average 
SPT blow count, also as expected. It should be noted that 
despite the ability of all models to capture the appropriate 
trends of settlement behavior, the values of settlement 
obtained from each model under similar conditions show 
some differences. For example, the settlement obtained 
from the ANN-based model developed by Shahin et al. 
[29] for foundation widths larger than 40 m is considerably 
different from that of the other models. In addition, the 

settlement predicted by the GEP-based model for an 
average SPT-N below 20 is also different from that of the 
other models. Based on the parametric study, the overall 
statement that can be made regarding settlement of 
shallow foundations on granular soils is that all input 
parameters are effective, but the weights of their 
effectiveness are different. For example, for soils with 
SPT-N values smaller than 20, the average SPT blow 
count is the most effective parameter. Consequently, 
measuring the actual SPT-N value for loose and relatively 
medium dense sandy soil is essential. In addition, the 
foundation width and net applied pressure affect settlement 
considerably. 

6. Summary and Conclusions 

In this study, three powerful soft computing approaches 
including evolutionary polynomial regression (EPR), 
genetic programming (GP) and gene expression 
programming (GEP) were employed to assess the complex 
behavior of shallow foundation settlement on cohesionless 
soils. The models were trained and tested using a databank 
of field measurements. In addition, a comprehensive 
parametric study was performed for further verification of 
the models. Finally, the newly generated models were 
compared with the most precise previous ones reported in 
the technical literature. Based on the results of this study, 
the following conclusions can be made: 

1. The proposed evolutionary-based models using 
EPR, GP and GEP techniques are able to accurately 
predict shallow foundation settlement on cohesionless 
soils. With respect to their precision and simplicity, the 
developed models can be successfully applied in practical 
projects. 

2. The comprehensive parametric study insured the 
proper performance of the new models considering the 
ability of the models to match the underlying physical 
meaning of geotechnical aspects of settlement problem. 
The results were also consistent with the findings of 
previous studies. 

3. The average SPT below count of subsoil, 
foundation width and net applied pressure are the most 
significant input parameters that affect the foundation 
settlement. 

4. The comparison between the newly developed 
EPR, GP and GEP models and the current most accurate 
ANNs and GP models available in the literature showed 
that the newly developed EPR and GP models outperform 
the previously developed ANNs and GP models.  

5. The feasibility of the EPR, GP and GEP 
approaches in finding solutions for highly nonlinear 
problems such as settlement of shallow foundations on 
granular soils was clearly illustrated in the current study, 
thus, these techniques can also be used to solve other 
complex engineering problems. Moreover, it is possible to 
further improve the predictive ability of the models 
developed by the proposed techniques by re-training the 
models with new cases when more data are made 
available. In the current topic, further information about 
field condition parameters reflecting ground and loading 
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conditions (e.g., thickness of soil layer, level of water 
table, etc.) can surely help researchers to propose more 
reliable models for more precise prediction of shallow 
foundations settlements on cohesionless soils. 
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