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Abstract 

In this paper, an advanced formulation of the spectral finite element method (SFEM) is presented and applied in order to 
carry out site response analysis of 2D topographic structures subjected to vertically propagating incident in-plane waves in 
time-domain. The accuracy, efficiency and applicability of the formulation are demonstrated by solving some wave scattering 
examples. A numerical parametric study has been carried out to study the seismic response of rectangular alluvial valleys 
subjected to vertically propagating incident SV waves. It is shown that the amplification pattern of the valley and its frequency 
characteristics depend strongly on its shape ratio. The natural frequency of the rectangular alluvial valley decreases as the 
shape ratio of the valley decreases. The maximum amplification ratio along the ground surface occurs at the center of the 
valley. A simple formula has been proposed for making initial estimation of the natural period of the valley in site effect 
microzonation studies. 
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1. Introduction 

Nowadays, it is well founded that 2D topographical 
effects influence highly seismic response of the ground 
surface and the distribution of damages due to the 
earthquake. 2D topographical effects may be considerable 
when the topography dimensions (hill and valley) are 
comparable with seismic wavelengths [1]. The frequency 
range of a strong earthquake is from 0.3 to 10 Hz, and the 
speed range of the seismic waves of alluvial layers varies 
from 0.1 to 3 km/s. Therefore, the seismic behavior of 
topographical structures may be considerably influenced 
by their multidimensional geometry. 

In addition to the importance of 2D topographical 
effects on seismic behavior, careful and efficient solution 
with less computational efforts has been a matter of 
concern to the researchers in this field. So, it made the 
researchers use suitable numerical methods for solution of 
wave propagation phenomenon or dynamic analysis of 2D 
topography’s effects. Examples of the most efficient 
numerical methods used by the researchers during the 
recent decade for seismic analysis of topographic areas are 
the conventional Finite Element Method (FEM), the 
Boundary Element Method (BEM), and the Spectral Finite  
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Element Method (SFEM). 
Examples of the most important numerical works done 

in the field of the FEM, are the works of Zhao and 
Valliappan [2,3], Sincraian and Oliveira [4] in 
investigation of seismic response of valleys and hills. 
Bouchon [1] was the first researcher who investigated the 
effect of hills on seismic behavior of the ground surface by 
using the BEM. Later, using this method, Geli et al [5] 
studied the effect of sub-surface layering and the presence 
of adjacent irregularities on the seismic response of hills. 
In 2001-2009, using the BEM or a combination of BEM 
with the FEM, Kamalian et al [6-16] conducted an 
extensive parametric study in order to investigate seismic 
behavior of various hills and valleys. In 2005, studying the 
Grinoble valley in France and using the SFEM numerical 
method, Chaljub [17] investigated the seismic behavior of 
this topographic structure. 

The SFEM is a high-order technique with important 
computational advantageous over the conventional FEM 
as well as the BEM. A degree of accuracy similar to the 
conventional FEM is achieved from it by using fewer 
meshing points. For this reason, it improves drastically the 
efficiency as well as the accuracy of the computational 
resources. The SFEM which has all advantages of the 
classic FEM, including the capability to solve non-linear 
problems in contrast to the BEM, has been strengthened 
with a special group of interpolation functions. These 
interpolation functions enable the SFEM to pass a wider 
range of wavelengths in the elements with more careful 
and less computational efforts than that of the 
conventional FEM [18]. 

Seismic 
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The SFEM was first used by Patera [19] in 1984 in 
order to solve some problems in Fluid Mechanics. Later, 
Cohen et al [20] (1993) applied this method in order to 
solve some wave propagation problems. In 1997-2000, 
Komatitsh [21,22,23,24] showed the validity, accuracy, 
efficiency, and stability of the SFEM in solving  many 
wave propagation problems such as the Lamp problem, 
Garion problem and etc. In 2002 and 2005, Komatitsh et al 
[25, 26] modeled the earthquake wave propagation in the 
earth's domain by using  the SFEM. In this research, 
records of the artificially-produced earthquake were 
compared to the records of the real earthquakes including 
Bolivia earthquake in 1994, Columbia earthquake in 1997, 
and the earthquake of Denali fault in 2002 in Alaska. The 
results indicated that SFEM was highly accurate in solving 
the problems of wave propagation. In 1999, Komatitsh et 
al [27] showed higher degrees of efficiency and accuracy 
of the SFEM in the wave propagation in the problems with 
topographical conditions, 3D hills and ditch. 

In this research, an advanced formulation of the SFEM 
is presented and applied in order to carry out site response 
analysis of 2D rectangular alluvial valleys subjected to 
vertically propagating incident SV waves in time-domain. 
The behavior of the alluvial is assumed isotropic linear 
elastic and the surrounding rock is assumed to behave 
rigidly. The most important aim of this research was to 
find initial answers to the following questions: How does 
the shape ratio (ratio of height to half-width) of an alluvial 
rectangular valley affect its amplification potential and its 
frequency characteristics? Can a uniform characteristic 
frequency be detected for all points along the ground 
surface? Where does the maximum amplification ratio 
occur along the ground surface? 

Although the nonlinear SFEM code developed in this 
research is capable of executing seismic response analysis 
of sites subjected to vertically propagating P waves, too, 
but the parametric study of this research was restricted to 
SV waves. The reason is that the material damping of soil 
or rock due to P waves is usually higher than the material 
damping due to S waves. So, P waves attenuate much 
more rapidly than S waves and this makes the S waves 

have greater displacement (or acceleration) amplitudes and 
more importance compared to the P waves, particularly in 
far fields. In addition, in case of vertically propagating 
incident waves, S waves produce horizontal vibration of 
the ground surface which is usually more destructive to the 
buildings than the vertical movement produced by P 
waves. 

2. Formulation of Spectral Finite Elements of the 
Problem 

2.1. Governing Equations 

In this section, formulation of the governing equations 
and their matrix form are presented. In the following, 
environmental issues is assumed isotropic, homogeneous, 
small-displacement with linear elastic behavior. The 
equilibrium equations for an elastic bounded medium Ω
Rd subjected to an external body-force fi is described by 
(1): 

 
diuf iijij ,...,1,  ,           (1) 

 
where 22 / tuu ii   is the second derivative of 

displacement of the medium with respect to time; ρ, the 
mass density, and 

ij  denotes the stress tensor 

components. Then, using the weighted residual approach, 
weak formulation of the governing equations and their 
matrix form are extracted. 

If we multiply Eq. (1) by the weight function iu , and 

the product integration on the level Ω is set equal to zero, 
this gives (2). 
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The first expression of the above integral can be 

rewritten by using the integration by parts as below:  
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Therefore, Eq. (2) will be written as below:  
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In the Finite Element Method, the level Ω is divided 

into m small elements. In each of the elements, we have: 
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where U is the vector of node displacement. Therefore, 
Eq. (4) is given as follows: 
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The individual expressions of Eq. (5) can be rewritten after discretization in space as following: 
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Now, if the above definitions are replaced in Eq. (5), 

after removing the coefficient 
TU , the following matrix 

form of the governing equation will be obtained:  
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where: 
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If material damping is assumed in the medium, Eq. (7) 

can be rewritten as follows: 
 

FUKUCUM   .  (9) 
 
In this research, the well known Rayleigh damping 

mechanism was used which can be expressed proportional 
to the mass and stiffness matrixes as follows: [30] 

 
KaMaC 10   (10) 

2.2. Mesh definition 

A spectral element approximation of Eq. (2) and its 
solution are obtained as follows. First, the domain   is 
decomposed into some quadrilateral (2D) non-overlapping 
elements e . Second, an expansion in terms of a tensor-

product of Nth-orderorthogonal polynomials is used to 
approximate solution, data, geometry and physical 
properties on each element. Each quadrilateral spectral 
element is analogous to the square. Hence, we adopt a 
suitable mapping between the square (master/reference 
element) and each spectral element (Fig. 1). The master 
element (base square) is defined in terms of  ,  as 

follows: 
 

11,11    (11) 
 

 
Fig. 1 Mapping a 2D surface element to the master square 
 
which are sometimes referred to as the initial 

coordinates. In addition, each quadrilateral element e  

consists of nn  nodes. The relation between a point (x,y) 

within each quadrilateral element is given and a point 
),(   in the master element may thus be written in the 

form: 
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where nx  and ny  are the coordinates of nth  node in 

the quadrilateral element domain e , and ),( nN  is the 

nth node’s shape function as :  
 

)()(),(  ll n
n

n
nn hhN   (14) 

 

in which )(ln
nh  and )(ln

nh  denote the nth node’s 

shape functions in  &  natural coordinates directions, 

respectively. The shape functions ),( nN are products of 

Lagrange polynomials in directions of  &  . Moreover 
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the Lagrange polynomials used in this research are in the following form: 
 

(15) 
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Note that as a result of this defination, the Lagrange 

polynomials return either zero or one at any given control 
point: 

 

nmmnh  )(  (17) 

 
Where   denotes the Kronecher delta. 
In the Spectral Finite Element Method, control points 

p  ، ,...,np 0  needed in defining the equation (15) in 

Lagrange polynomials of degree ln  are placed at special 

positions called Legendre-Gauss-Lobatto (LGL) points. 
Place of the control points is determined through solving 
the following equations:  
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where, 

lnL  is first derivative of Lagrange polynomials 

of degree ln . 

By using these control points, the computational errors 
decrease exponentially. This method can converge faster 
to the exact solution than FEM due to using fewer degrees 
of freedom with almost the same accuracy. Control points 
make the mass matrix diagonal, which saves time and 
memory efficiently. 

Differential elements of area dxdy  within a given 

quadrilateral element e  is related to  differential 

elements of area dd  in the master square by 

 
ddJdxdy e  (19) 

 
Where Je denotes the Jacobian of the transformation:  
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On each elements e , a function f  is interpolated by 

products of Lagrange polynomials of degree ln  as: 
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where the coefficients pqf  are the functional values of 

f  at the interpolation points   qpx  ,
 . 
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In the SFEM, integrations of the matrices may be 

approximated using the Legendre-Gauss-Lobatto (LGL) 
quadrature rule in integration over the elements e : 

 

         


  



n

qp
pqepqqpe JfddJxfdxdyxf

e 0,
)(

1

1

1

1
,,   (23) 

 

qp ww ,  are the weights associated with the LGL points 

of integration, and  qpepqe JJ  ,)(  . 

A highly interesting property of the SFEM is the fact 
that the mass matrix [M] is diagonal due to using LGL 
quadrature for each element (Komatitsh et al, 1999, [23]). 
This allows for a very significant reduction in 
computational cost and complexity. 

2.3. Time integration of general system 

To solve the system of differential equations (Eq. 9), 
several numerical methods are available. In numerical 
methods, two factors of stability and accuracy are highly 
significant. Among the most applicable ones are Newmark 
Method and Central Difference Method. The Newmark 
Method, with 5.0  and 25.0 , is unconditionally 
stable; on the contrary the Central Difference Method is 
conditionally stable. Selection of time step t  is another 
factor which must be taken into account when solving the 
system of equations. Number of the time steps influences 
directly the computation volume and the needed accuracy. 
In SFEM, in high orders, the intervals between the nodes 
are smaller than those of the FEM. Therefore, smaller time 
steps are needed for high-order spectral elements. In this 
study Newmark numerical integration method has been 
used for solving the system of differential equations. 

Like the other types of numerical methods based on 
meshing, in the SFEM, spatial separation is controlled by 
the elements' size and the degree of the polynomial order 

used in interpolation functions in each element n . If the 

degree of the polynomial order, n  , is very low (for 

example, less than 4), the SFEM brings about inaccuracies, 
similar to FEM used in problems of wave propagation 
(Marfurt, 1984) [28]. On the other hand, a high-order 
polynomial (for example, more than 15) makes this 
method very accurate, but the computation costs will be 
increased. In SFEM used for the problems of wave 
propagation, applying a polynomial with an order ranging 
from 5 to 10, the best balance will be provided between 
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accuracy and cost (Seriani and Priolo, 1994) [29]. 

3. Program Verification 

A two-dimensional spectral finite element code named 
as NASEM was developed based on the above mentioned 
formulation. Two numerical examples are presented in 
order to demonstrate the accuracy, efficiency and 
capability of the SFEM in carrying out site response 
analysis of topographical structures in time domain. All 
quantities are measured in SI. 

3.1. Example 1: site response analysis of a single layer on 
half-space (1D analysis) 

The purpose of this example is to illustrate the 
applicability and accuracy of the presented SFEM 
formulation in performing site response analysis of a 1D 
uniform homogeneous soil layer resting on a rigid bed 
rock and subjected to vertically propagating incident SV 
waves. The shear wave velocity of the soil layer was 
chosen as 300 m/s, its Poisson ratio was 1/3, its damping 
ratio was 0.05, its mass density was 2.0 t/m3 and its 
thickness was chosen as 50 m. The incident wave was 
chosen as the well known Ricker type (Fig. 2) with the 
following equation: 

 

(24) 
2
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Fig. 2 Displacement time history of the incident wave 

 
where pf , 0t  and maxA  denote the predominant 

frequency, the time shift parameter and the maximum 
amplitude of the displacement time history, which were 
chosen as 2.4 Hz, 0.9 s and0.0001 m, respectively.  

Fig. 3 shows the mesh geometry used for the solution 
of the problem. The lateral boundaries of the soil layer 
were placed at a distance of 5000 m from each other (50 

times the thickness of the soil layer) i.e. sufficiently far 
away from its center in order to simulate the 1D condition 
at the centerline. A number of 1250 spectral finite 
elements were used in order to discretize the area. In all 
elements, the ratio of length to width was selected as 2. 
The numerical analysis was executed using polynomials of 
degree 4 and a time step of equal to 0.005 s.  

 

 
Fig. 3 Geometry and discretization of the 1D single layer on rigid half-space in example (1) by the SFEM 

 
Meanwhile, the same problem was analyzed once again 

using the well known Plaxis code [30] in order to validate 
the numerical results obtained by the SFEM. PLAXIS is a 
conventional isoparametric finite element program 
developed for geotechnical applications.  Quadratic 6-node 
and 4th order 15-node triangular elements can be used in 
order to discretize the problem. Either fixed or proper 
absorbent boundary conditions can be used in order to 
model the lateral boundary conditions. In 1D site response 
analysis problems, the input motion will be subjected to 
the bottom boundary.  

In the FEM analysis, two models were analyzed with 
two different widths of 4000 and 5000 m, respectively. A 
total number of 3136 and 3524 quadratic triangular finite 
elements with medium size were used in order to discretize 
these two models, respectively. Fixed lateral boundary 
conditions were used; because the distance between the 
lateral boundaries was long enough in order to prevent the 
reflected error waves disturb the 1D response of the 
ground surface at the middle point. The reason of changing 
the distance between the lateral boundaries from 4000 to 
5000 m was to become assured that these boundaries do 
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not affect the 1D response at the centerline. 
Fig. 4 demonstrates the amplification curves obtained 

by the FEM code [30] at the top of the centerline. The 
amplification ratio was defined as the ratio of the Fourier 
spectrum of the acceleration time history at the ground 
surface to the Fourier spectrum of the acceleration time 
history at the bed rock. As can be seen, the amplification 
curves coincide and it is herewith confirmed that the 
lateral boundaries are sufficient far away from each other 
and do not affect the 1D site response at the centerline. 
Figs. 5 and 6 demonstrate the horizontal normalized 

acceleration time history as well as the amplification curve 
obtained by the SFEM and the FEM code at the top of the 
centerline, respectively. As it can be seen, an excellent 
agreement exists between the presented results.  

Fig. 6 shows that the maximum amplification ratio occurs 
at a frequency of 1.5 Hz, which matches the well known 
natural frequency formula (fn=Vs/4H) of a single soil layer 
(Kramer (1996) [31]), where sV  and H  denote the shear 

wave velocity and thickness of the soil layer, respectively. 

 

 
Fig. 4 Comparison of the 1D amplification curves obtained for the single soil layer (at top of the centerline) by the FEM for the two widths 

of 4000 and 5000 m 
 

 
Fig. 5 Normalized (to PRA) acceleration time histories obtained by the SFEM and the FEM at top of the soil layer in the 1D example 

 

 
Fig. 6 Comparison of the 1D amplification curves obtained for the single soil layer (at top of the centerline) by the SFEM and the FEM 
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3.2. Example 2: site response analysis of a rectangular 
alluvial valley (2D analysis) 

The purpose of this example was to illustrate the 
applicability, accuracy and efficiency of the presented 
SFEM formulation in performing site response analysis of 
a 2D alluvial valley subjected to vertically propagating 
incident SV waves. The depth and width of the valley were 
chosen as 50 and 250 m, respectively. The rock was 
assumed as rigid. The shear wave velocity of the filling 
soil, its Poisson ratio, its damping ratio and its mass 
density were chosen as 400 m/s, 1/3, 0.05 and 2.0 t/m3, 
respectively. The incident wave was chosen again as the 
well known Ricker type with a predominant frequency of 3 
Hz, a time shift parameter of 0.9 s and maximum 
amplitude of 0.005 m. 

Fig. 7 shows the mesh geometry used to solve the 
problem. A number of 100 spectral finite elements were 
used in order to discretize the area. In all elements, the 
ratio of length to width was selected equal to 1. The 
numerical analysis was executed using polynomials of 
degree 5 and a time step of 0.01 s. Meanwhile, the same 
problem was analyzed once again using the Plaxis code 
[30] in order to validate the numerical results obtained by 
the SFEM. In the FEM model, a number of 914 quadratic 
triangular finite elements with medium size were used in 
order to discretize the area. 

Figs. 8 and 9 demonstrate the horizontal normalized 
acceleration time histories as well as the amplification 

curves obtained by the SFEM and the FEM at top of the 
centerline, respectively. As it can be seen, an excellent 
agreement exists between the presented results.  

Fig. 10 demonstrates the amplification curves obtained 
by the SFEM at the top of the centerline for four different 
polynomial degrees (Nl = 2, 3, 4 and 5). As can be seen, if 
polynomials with a degree of more than 3 are used, 
excellent accuracies would be obtained. Figures 11 and 12 
demonstrate the amplification curves obtained at the same 
point via different polynomial degrees for the cases that 50 
and 20 spectral finite elements, respectively, are used in 
order to discretize the area. As it can be seen and as 
expected, decreasing the number of elements requires 
using polynomials with larger degrees in order to obtain 
the same excellent accuracies. In the case that 50 spectral 
elements are used in order to discretize the area, 
polynomials with a degree of at least 4 are required. In the 
case that only 20 spectral elements are used in order to 
discretize the area, polynomials with a degree of at least 5 
are required. Table 1 compares the run time needed by the 
SFEM for the above mentioned combinations of 
polynomial degrees and mesh sizes. As can be seen and as 
expected, decreasing the polynomial degree decreases the 
run time. Using a number of 20 elements with a 
polynomial degree of 5, a run time of only 18 second is 
needed in order to analyze the problem and obtain 
acceptable results by the SFEM which shows it is 
advantageous over the classic FEM. 

 

 
Fig. 7 Geometry and discretization of the 2D rectangular alluvial valley example (2) by the SFEM 

 

 
Fig. 8 Comparison of the normalized (to PRA) acceleration time histories obtained by the SFEM and the FEM at the top central point of the 

rectangular alluvial valley 
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Fig. 9 Comparison of the 2D amplification curves obtained by the SFEM and the FEM at top of the center line of the rectangular alluvial 

valley with a width of 250 m 
 

 
Fig. 10 Comparison of the 2D amplification curves obtained by the SFEM at top of the center line of the rectangular alluvial valley for four 

different polynomial degrees (Nl = 2, 3, 4 and 5) and 100 spectral finite elements 
 

 
Fig. 11 Comparison of the amplification curves obtained by the SFEM at top of the centerline of the rectangular alluvial valley for four 

different polynomial degrees (Nl = 2, 3, 4 and 6) and 50 spectral finite elements 
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Fig. 12 Comparison of the amplification curves obtained by the SFEM at top of the centerline of the rectangular alluvial valley for five 

different polynomial degrees (Nl = 2, 3, 5, 8 and 12) and 20 spectral finite elements 
 

Table 1 Comparison of the run time needed by the SFEM for various combinations of polynomial degree and mesh sizes 

Method of 
Analysis 

Number of Element 
Polynomials of 

Degree 
Time (s) Results 

SFEM 

100 2 1.156 Not Ok 

100 3 28.55 Ok 

100 4 171.03 Ok 

100 5 581.19 Ok 

50 2 0.4 Not Ok 

50 3 5.89 Not Ok 

50 4 40.36 Ok 
50 6 350.23 Ok 
20 2 0.2 Not Ok 
20 3 1.078 Not Ok 
20 5 17.38 Ok 
20 8 216.2 Ok 
20 12 1440.7 Ok 

FEM 914 - 1898 Ok 

 

4. Paraemtric Study 

4.1. Problem posing and model verification 

The geometry of the 2-D homogenous rectangular 
alluvial valley investigated by the parametric study was 
defined in Fig. 13 where H and ax denote the thickness 
and the half-width of the soil layer, respectively. The 
thickness of the soil layer was selected as 50 m. Six 
different shape ratios (H/ax) of 0.2, 0.4, 0.6, 0.8, 1.0 and 
2.0 encountered frequently in the nature were considered. 
The shear wave velocity of the soil layer was chosen as 
300 m/s, its Poisson ratio was chosen as 1/3 and its 

damping ratio was 0.05. Only one value of Poisson ratio 
was considered because previous works [32] showed that 
the Poisson ratio of the media has a less important effect 
on the seismic behavior of topographic features in 
comparison with the shape ratio. As only the amplification 
curves along the surface of the valley was aimed to be 
studied, the same vertically propagating incident SV wave 
of the Ricker type (Fig. 2) was subjected to the valley. 
Because altering the input motions would not affect the 
amplification pattern in a linear elastic media. A number 
of 400 spectral elements, a time step of equal to 0.005s and 
a polynomial degree of 5 or 36 control points was used in 
the numerical analysis. 
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Fig. 13 Geometry of the 2-D rectangular alluvial valley investigated by the parametric study. H and ax denote the thickness and the half-

width of the soil layer, respectively 
 

4.2. Results 

Fig. 14 demonstrates the amplification curves of 
various nodes along the ground surface via the different 
shape ratios. As can be seen, the amplification pattern of 
the rectangular alluvial valley and its frequency 
characteristics depend strongly on its shape ratio. In each 
rectangular alluvial valley and irrespective of its shape 
ratio, the maximum amplification ratio at each node along 
the ground surface occurs at a characteristic frequency 
which is uniform along the ground surface. This 
characteristic frequency could be named as the natural 
frequency of the rectangular alluvial valley. The value of 

the natural frequency of the rectangular alluvial valley 
decreases as the shape ratio decreases and tends towards 
the natural frequency of the corresponding 1D uniform soil 
layer over the bed rock (W = Vs/4H). Vice versa and as 
expected, the value of the natural frequency of the 
rectangular alluvial valley increases as its shape ratio 
increases. This is because reducing the width of the valley 
means confining a much lesser mass of  alluvial by the 
rigid bed rock which results in increasing the stiffness of 
the alluvial in the horizontal direction. It can also be seen 
that in each rectangular alluvial valley and irrespective of 
its shape ratio, the maximum amplification ratio along the 
ground surface occurs at the center. 

 

 
Fig. 14 Variation of the amplification curves along the ground surface of the rectangular alluvial valley (Vs = 300 m/s) via different shape 

ratios 

H 
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Fig. 15 demonstrates how the maximum amplification 
ratio changes along the rectangular alluvial valley via the 
different shape ratios. As can be seen, it is once again 
confirmed that in each rectangular alluvial valley and 
irrespective of its shape ratio, the maximum amplification 
ratio along the ground surface occurs at the center of the 
valley and when one moves from each of the corners 
towards the center, the maximum amplification ratio of the 
ground surface increases. No clear relation could be 
detected between the maximum amplification ratio and the 
shape ratio of the rectangular alluvial valley. The 
amplification potential of the rectangular alluvial valley 
ratio gets its maximum value at a shape ratio of 0.6, 
decreases gradually as the shape ratio decreases from 0.6 
to 0.2 and decreases gradually too, as the shape ratio 
increases from 0.6 to 2. 

Fig. 16 demonstrates the amplification curves of the 
center of the rectangular alluvial valley with different 
shape ratios and compares them with the amplification 
curve of the corresponding 1D uniform soil layer over the 
bed rock. As can be seen, when the shape ratio decreases, 
the natural frequency of the rectangular alluvial valley 
decreases and the amplification curve of the center node 
(2D case) moves towards the amplification curve of the 
corresponding 1D case. Although in all rectangular 
alluvial valleys with shape ratio of less than one, the 
maximum amplification ratio at the center node is more 
than that corresponding to the 1D case, but in the 

rectangular alluvial valley with a shape ratio of 2 the 
converse case was detected. 

Extracting a simple formula in order to get an initial 
estimation of the natural period of a rectangular alluvial 
valley could be useful in site effect microzonation studies. 
Fig. 17 demonstrates how the natural frequency of the 
rectangular alluvial valley alters with its shape ratio. Two 
curves are presented that corresponds to two different 
alluvials with a shear wave velocity of 300 and 400m/s, 
respectively. As can be seen, the curves are similar and 
infuse the idea of being capable to become non-
dimensionalized. Fig. 18 demonstrates these two curves 
once again, this time normalized to the natural frequency 
of the corresponding 1D uniform soil layer over the bed 
rock. As expected, the curves coincide and the ratio of the 
natural frequency of a rectangular alluvial valley ( DF2 ) to 

the natural frequency of the corresponding 1D uniform soil 
layer over the bed rock ( DF1 ) can be approximated as a 

function of the shape ratio by the following formula: 
)699.0(exp958.012 SRFF DD   

which can be re-written as: 
  HVSRF sD  4)699.0(exp958.02  

Where, Vs represents shear wave velocity, H 
rectangular valley depth, and SR the valley shape ratio 
(SR=H/ax). 

 

 
Fig. 15 Variation of the maximum amplification ratio along the ground surface of the rectangular alluvial valley (Vs = 300 m/s) via different 

shape ratios 
 

 
Fig. 16 Amplification curves at top of the centerline of the rectangular alluvial valley (Vs = 300 m/s) with different shape ratios 
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Fig. 17 Natural frequency of the rectangular alluvial valley via its shape ratio for two different shear wave velocities of 300 and 400 m/s 

 

 
Fig. 18 Dimensionless frequency of the rectangular alluvial valley via its shape ratio 

 

5. Conclusion 

In this paper, an advanced formulation of 2D SFEM in 
time-domain is presented and implemented in order to 
carry out site response analysis of topographic structures 
subjected to vertically propagating in-plane incident shear 
waves. The accuracy, efficiency and applicability of the 
formulation are demonstrated through some numerical 
examples of 1D and 2D site response analysis problems. A 
numerical parametric study was carried out on the seismic 
response of rectangular alluvial valleys subjected to 
vertically propagating incident SV waves. It is shown that 
the amplification pattern of the rectangular alluvial valley 
and its frequency characteristics depend strongly on its 
shape ratio. A natural frequency can be defined for the 
rectangular alluvial valley so that at all nodes along the 
ground surface, the highest amplification factor occurs at 

this predominant frequency. The natural frequency of the 
rectangular alluvial valley decreases towards the natural 
frequency of the corresponding 1D uniform soil layer on 
bed rock, as the shape ratio of the valley decreases. The 
maximum amplification ratio along the ground surface 
occurs at the center of the valley and decreases when one 
moves towards the corners. A simple formula has been 
proposed for initial estimation of the natural period of 
rectangular alluvial valleys which can be used in site effect 
microzonation studies. 
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