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Abstract 

In this paper, an advanced formulation of time-domain, two-dimensional Boundary Element Method (BEM) with material 
damping is presented. Full space two-dimensional visco-elastodynamic time-convoluted kernels are proposed in order to 
incorporate proportional damping. This approach is applied to carry out site response analysis of viscoelastic topographic 
structures subjected to SV and P incident waves. Seismic responses of horizontally layered site, semi-circular canyons, slope 
topography and ridge sections subjected to these incident waves are analyzed in order to demonstrate the accuracy of the 
kernels and the applicability of the presented viscoelastic boundary element algorithm. The results show an excellent 
agreement with recent published results obtained in frequency domain. Also, the effects of different material damping ratios on 
site response are investigated. 

Keywords: BEM; Visco-elastodynamic kernels, Time domain, Viscoelastic, Topography effects. 

1. Introduction 

It is well established that the seismic ground response 
of surface topographies may differ from those of free-field 
motion during earthquakes. Although the topography 
effect on ground response could be very important when 
the wavelength is comparable to irregularity dimensions 
[1], there are only few building codes, which have 
considered this issue. This is because of the complex 
nature of seismic wave scattering by topographical 
structures, which can only be solved accurately and 
economically using advanced numerical methods under 
realistic conditions. 

The boundary element method (BEM) is a very 
effective numerical tool for dynamic analysis of linear 
elastic bounded and unbounded media. The main 
advantage of this method is that the discretization is done 
only on the boundary, yielding smaller meshes and 
systems of equations. 

Another advantage is that this method automatically 
satisfies Sommerfeld’s radiation conditions at infinity and 
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there is no need to model the far field in problems with 
semi-infinite or infinite domains.  It is clear that time-
domain boundary element in comparison with frequency 
domain can extend to the nonlinear behavior and also, it 
can be combined with finite element method (FEM). 

Regarding the application of BEM for site response 
analyses of topographic structures in the time domain, 
Antes and Von-Estorff (1988) [2] were the first who 
studied the seismic response amplification from 
topography using a two-dimensional hybrid boundary 
element/finite element method. Takemiya and Fujiwara 
(1994) [3] used a time-domain 2D BEM to analyze the 
seismic response of canyons and alluvial basins, but their 
formulation was restricted to the scattering of anti-plane 
(SH) waves, which involves less computational effort. 
Adam and Takemiya (1996) [4] and Takemiya and Adam 
(1997, 1998) [5, 6] studied the seismic wave amplification 
from 2D topography and geological conditions in the Kobe 
valley during the Hyogo-Ken Nanbu earthquake using a 
hybrid boundary element/finite element method. Recently 
Kamalian et al. (2003, 2006) [7, 8] applied the time 
domain boundary element method and the hybrid time 
domain boundary element/finite element method to 
analyze the scattering and diffraction of P and SV waves 
by homogenous and non-homogenous topographic 
structures. In their research, Kamalian et al. (2007, 2008a, 
b) [9- 11] used a direct boundary element method to study 
the amplification pattern of 2D semi-sine shaped valleys 
and hills subjected to vertically propagating incident 
waves and ultimately introduced some simple rules to be 
used for the seismic design of structures found along the 
two-dimensional topographic structures. 
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Some researchers developed the time domain boundary 
element formulations to model the viscoelastic behavior. 
Wolf and Darbre (1986) [12] used the weighted residual 
technique, the indirect BEM, the truncated indirect BEM 
and the direct BEM in time domain for 1-D dynamic 
problem of the spherical cavity in an infinite space. All 
formulations were the exact outcome, but the weighted 
residual technique and the truncated indirect BEM were 
much more appropriate than the direct BEM. Sim and 
Kwak (1988) [13] presented linear viscoelastic BEM in 
time domain by using viscoelastic fundamental solutions 
in terms of the constant coefficients of relaxation 
functions. This form required the regularity of field 
variables to be one order less than that of the usual 
formulation. Shinokawa and Mitsui (1993) [14] proposed a 
numerical method of viscoelastic boundary element 
analysis by using the time marching method and are 
combined with the finite element method. They applied 
this method to solve some numerical examples with the 
tunnel and excavation problems. Gaul and Schanz (1992) 
[15] developed a formulation for a simple viscoelastic 
model by using the Laplace transformed fundamental 
solution which is inverted within each time step. Later, 
Schanz (1999) [16] presented a viscoelastic formulation 
based on the so-called “convolution quadrature method” 
proposed by Lubich [17]. In this formulation, the 
convolution integral was numerically approximated by a 
quadrature formula whose weights are determined by the 
Laplace transform of the fundamental solution and a linear 
multistep method. However, inverse Laplace 
transformation needed to be implemented numerically in 
each time step, which involves high computational effort. 
In Feng et al. (2001) [18], a new material damping model 
which was convenient for use in the time domain boundary 
element method (TDBEM) was presented and 
implemented in a proposed procedure. Since only 
fundamental solutions for linear elastic material are 
employed, the procedure enjoys high efficiency and is easy 
to be integrated into TDBEM code. Recently, Ashrafi and 
Farid (2010) [19] applied a weighted residual procedure 
and Kelvin’s fundamental solution of isotropic 
elastostatics to analyze viscoelastic problems with any 
time-dependence load and boundary conditions 
performance. This approach avoided the use of relaxation 
functions and mathematical transformations. 

Regarding 2D site response analysis of topographic 
structures by considering material damping, to the best 
knowledge of the authors, only a few works have been 
done by the BEM, which were done in frequency domains. 
Semblat et al. (2000) [20] presented a boundary element 
method for visco-elasticity, with a Zener model. They used 
this method to evaluate seismic wave amplification in Nice 
(France) and compared the results with those of other 
experiments. Alvarez-Rubioa et al.(2004) [21] presented 
the adaptation of the formulation of DBEM, for computing 
2D site effects due to the diffraction of in-plane waves at 
irregular sub and superficial laterally varying layered 
visco-elastic media. This method worked directly on 
frequency-domain. Tarinejad et al. (2007) [22] 
investigated topography effects of canyon sites using a 3D 

boundary element procedure in frequency domain. They 
used a multi-domain boundary element method proposed 
by Ahmad and Banerjee [23]. In additional, they 
investigated the effects of different wave parameters, 
material properties (damping ratio and poisson's ratio) and 
canyon geometry on site response. 

Review of the literature shows that all studies on 
seismic behavior of viscoelastic topographic structure by 
using BEM were restricted to frequency domain. The 
important limitation of the analysis in frequency-domain is 
its shortcoming in non-linear problems. On the other hand, 
the published works on seismic behavior of topographic 
structure by using time domain BEM were limited to 
elastic case. As, the ideal model of a linear elastic soil is 
not adapted in dynamic analysis, it is necessary to take into 
account the soil damping ratio and so to use a formulation 
for dynamic viscoelasticity. 

This paper presents a time-domain viscoelastic BEM 
formulation for seismic response analysis of topographic 
structures. Full space, two-dimensional visco-
elastodynamic time-convoluted kernels are presented in 
order to incorporate proportional damping. The presented 
boundary element algorithm and derived time-convoluted 
kernels are applied to carry out site response analysis of 
viscoelastic topographic structures subjected to SV and P 
incident waves. The applicability and efficiency of this 
implemented viscoelastic BE algorithm has been 
demonstrated by analyzing site responses of various 
topographic features subjected to incident SV and P 
waves, including horizontally layered site, semi-circular 
canyon, semi-elliptical hill, slope topography and ridge 
section. Also, the effects of different material damping 
ratios on site response are investigated in time and 
frequency domains. 

2. Governing Equation 

The governing equation for an elastic, isotropic, and 
homogeneous body with a small amplitude displacement 
field can be written as: 
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in which ui denotes the displacement vector, bi denotes 

the body force vector and c1 and c2 are the propagation 
velocities of the compressional and shear waves, 
respectively, which are given by  /)2(2
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with   and   being the Lame constants and   the mass 
density. The corresponding governing boundary integral 
equation for an elastic, isotropic, homogeneous body can 
be obtained using the well known weighted residual 
method [24] which is as follows: 
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In which, Gij and Fij are the transient displacement and 
traction fundamental solutions, respectively, and represent 
the displacements and tractions at a point x at time t due to 
a unit point force applied at s and the preceding time

t . The terms Gij כ ti and Fij כ ui are the Riemann 
convolution integrals, ti represents the traction and cij 
denotes the well-known discontinuity term resulting from 
the singularity of the Fij fundamental solutions. In 
Equation (2), the contributions due to initial conditions and 
body forces are neglected. In the case of seismic loading, 
assuming that the total displacement can be splitted into 

incident ( .inc
ju ) and scattered ( .sc

ju ) components, the 

above-mentioned governing boundary integral equation 
should be modified as follows [25, 26]: 
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Integrating by parts and considering zero initial 

conditions lead to the following alternative form of 

boundary integral equation [27]: 
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In which, iv  is the velocity vector and *** , ijijij WandZG

denote the corresponding solutions for displacement, 
traction and velocity respectively. The above mentioned 
expressions can be illustrated as follows: 
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The implementation of boundary integral Equation (4) 

needs approximation in both temporal and spatial 
variations of the field variables. For temporal integration, 
the time axis is divided into N equal steps, so that tNt  .

accordingly. By using a linear time variation of the field 
variables, the displacement, velocity and traction are 
expressed as follows: 
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In which, )(1   and )(2  are linear temporal shape 

functions which are given by: 
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subscripts 1 and 2 refer to the forward and backward 

temporal nodes, respectively, during a time step. Thus, the 
time integration involves only the fundamental solutions 
and is expressed by: 
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After spatial discretization by using isoparametric 

quadratic boundary elements and some rearrangements, 
the convoluted BEM equation for linear temporal variation 
could be written as: 
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N denotes the last time step, Q shows the total number 

of boundary elements and L represents the interpolation 
function of an isoparametric quadratic boundary element.
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elastodynamic displacement and traction kernels 
respectively, which are derived from their corresponding 
fundamental solutions Gij, Zij and Wij. The two-
dimensional full space elastodynamic kernels are given as 
below: 
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the coefficients Pk, Qk  and Sk  are defined as: 
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and the coefficients B1, B2 and B3 are given as: 
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By writing Equation (18) sequentially for each of the 

boundary nodes and transferring all known terms to the 
right side, the assembled system of equation takes the 
following matrix form: 

 
NZTGUF  N1N1  (25) 

 
where: 
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.11
N
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incnnNnnNN N

UUFTGZ  (26) 

 
NU and NT denote the nodal displacement and traction 

vectors at the current time node, respectively. NZ includes 
both the effects of the past dynamic history and the 
incident motion on the current time node. It should be 
mentioned that the spatial integrals in Equations (25) and 
(26) could be performed easily by using the Gaussian 
normal quadrature rule, provided that an intelligent 
subsegmentation with suitable mapping is adopted to make 
the kernel-shape function-Jacobian product well behaved 
over each sub-segment. Strongly singular blocks in F1 

could be evaluated indirectly by using the concept of rigid 
body motion [24]. As this technique is valid only for 
problems with closed boundaries, the unbounded 
boundaries of half-plane problems should be enclosed with 
fictitious ones named as enclosing elements [23, 28-30]. 

3. Boundary Element Equation with Damping 

The terms iij pG * , iij uZ *  and iij vW *  in Equation 4 are 

the Riemann convolution integrals and are expressed by: 
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t

iijiij dxvtsxwvW
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** ),(),,(*   (29) 

 
Assume that a unit point force is applied at a two-

dimensional system at time t=0. If the system has a liner 
elastic behavior, the displacement at time t is thought to be

)(tu . Also, if the system has viscoelastic behavior, the 

displacement at time t, by considering material damping 
equal with Equation (30). This has been carried out 
successfully in Ref. [18]: 

 
Tttutu 2/)()1)(()(     (30) 

 
In which, T is the prominent period of earthquake 

loading. 
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From a practical point of view, the coefficient of 
proportional damping ߟ can be determined by other well-
known models, such as viscous damping or hysteretic 
damping. For example, ߟ can be related to the viscous 
damping ratio by Equation (31) [18]: 

 
)4exp(1    (31) 

 

where,   is the viscous damping ratio. 
Regarding to displacement relationship between the 

system with and without damping (Equation 30) and 
applying it in the integral boundary element equation, 
Equation 4 takes the following modified form for a 
viscoelastic body: 
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where ),(. tsu inc

jd is damped incident wave and

Tt
ij tsxG 2/)()1)(,,(   , Tt

ij tsxW 2/)()1)(,,(    and 

Tt
ij tsxZ 2/)()1)(,,(  

 
may be defined as generalized 

solutions for a 2D viscoelastic problem. When the material 
damping is properly small, the term Tt 2/)()1(    fixed over 
a time increment t  and can be put outside the boundary 
integration. 

Then, viscoelastic boundary element equation the same 
as the elastic boundary element equation is presented in 
the previous section, but the term NZ  is modified to: 
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Comparing Equation (33) with Equation (26), the two-

dimensional, full space, elastodynamic kernel 1nNG and 
1nNF  need to be modified to   TtnNnNG 2/)1(1 1  

and   TtnNnNF 2/)1(1 1    for each time step, 

respectively. Then   TtnNnNG 2/)1(1 1    and 

  TtnNnNF 2/)1(1 1    are introduced as two-

dimensional, full space, visco-elastodynamic kernels. 

4. Numerical Examples 

The propagation of waves in a 2D viscoelastic 
continuum has been calculated by the presented 
viscoelastic boundary element formulation. The above-
mentioned formulation has been implemented in a general-
purpose, vicoelastic BEM code named as VBEMSA 
(Viscoelastic Boundary Element Method for Seismic 
Analyses). The numerical examples of this section are 

presented to demonstrate the applicability and efficiency 
of the proposed time-stepping vicoelastic BE method in 
order to carry out site response analysis of topographical 
structures subjected to incident SV and P waves. 

4.1. Free field motion of layered half-space 

The purpose for the presentation of this example is to 
illustrate the applicability and accuracy of the presented 
vicoelastic BE algorithm, in performing one-dimensional 
site response analysis of a viscoelastic heterogeneous 
layered half-space. Fig. 1 shows a soft layer with a height 
of 10m and a shear wave velocity of 70.5 m/s and viscous 
damping ratio of 10%, overlying a stiffer half-space with a 
shear wave velocity of 141 m/s. The lateral boundaries of 
the upper bounded BEM2 zone are extended far enough in 
order to simulate the one-dimensional wave propagation 
pattern at the valley center. 
 

 
Fig. 1 Geometry and discretization of the layered half-plane 

problem 
 
The mass densities and the Poisson’s ratios of all 

materials are 2.0 ton/m3 and 1/3, respectively. In order to 
discretize the problem, 145 quadratic boundary elements 
were used. The half-space, was also subject to vertical 
propagating incident SV and P waves. In all analyses, the 
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vertically propagating incident P and SV waves of Ricker 
type are adopted as a dynamic excitation. Later, Kamalian 
et al. [8] studied this example in elastic soil layer by using 
hybrid FE /BE method. The Ricker type wave equation 
can be presented as follows: 

 

  2
0 ))((2

0max ))((21)( ttf
p pettfAtf    (34) 

fp and t0 denote the predominant frequency and the time 
shift parameter of the time history, which are chosen to be 
3Hz and 0.5 s, respectively. Amax denotes the maximum 
amplitude of the time history, which is chosen as 0.0005 
m. Fig. 2 shows the displacement and acceleration time 
histories of the incident wave. 

 

 

 
(a) 

 

 
(b) 

Fig. 2 (a) Displacement and (b) acceleration time histories of an incident wave 
 
The same example is also solved with the well-known 

SHAKE [31] program developed specifically for one-
dimensional site response analysis. The half space is 
defined as elastic bedrock, and the object motion is 
assigned to the top of the half space as with in soil layer. 

Figs. 3 and 4 present the horizontal displacement time 

histories obtained by the VBEMSA program at top (O) and 
base (I) of the soft layer for different time steps, 
respectively. As expected, the motion at the top of the soft 
layer shows a delay with respect to the base, which is 
consistent with the difference in the shear wave velocities 
and also the thickness of the soft layer. Figs. 5 and 6 
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compare the horizontal acceleration time histories 
calculated by the SHAKE and VBEMSA programs at the 
top (O) and base (I) of the soft layer, respectively. As it 
can be seen, there exists an excellent agreement between 
the obtained results. As expected, the total vertical 

displacement is equal to zero. In the case of an incident P 
wave, there exists as well an excellent agreement between 
the obtained results. As expected, the total horizontal 
displacement is equal to zero. 

 
 

 
 

Fig. 3 Horizontal displacement time history at the base of the viscoelastic soft layer via 
different time steps (point I) 

 
 

 
Fig. 4 Horizontal displacement time history at the top of the viscoelastic soft layer via 

different time steps (point O) 
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Fig. 5 Horizontal acceleration time histories at the base of the viscoelastic soft layer (point I). 

 

 
Fig. 6 Horizontal acceleration time histories at the top of the viscoelastic soft layer (point O). 

 
Figs. 7 and 8 compare the horizontal acceleration time 

histories calculated by the VBEMSA programs at the top 
(O) and base (I) of the soft layer in the cases of elastic and 

viscoelastic layers, respectively. As it can be seen, the 
damping ratio has considerable effects on the acceleration 
value. 

 

 
Fig. 7 Horizontal acceleration time histories at the base of the elastic and viscoelastic soft layer (point I). 
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Fig. 8 Horizontal acceleration time histories at the top of the elastic and viscoelastic soft layer (point O). 

 

4.2. Semi-circular canyon 

This problem was studied in a dimensionless form by 
Alvarez-Rubio et al. [21] for viscoelastic media. The 
canyon has a radius of (r), a shear wave velocity of (c2), a 

Poisson’s ratio of 3/1  and damping ratio of 1%. Fig. 9 
shows the geometry and discretization of a semi-circular 
canyon subjected to vertically propagating incident SV and 
P waves of the Ricker type. 

 

 
Fig. 9 Schematic geometry and discretization of a semi-circular 
canyon subjected to vertically propagating incident SV and P 

waves of the Ricker type 
 
In order to apply the results of analyses to frequencies 

and geometrical conditions different from those of this 
study models, all results were presented in dimensionless 
forms. The problem was solved by using 203 quadratic 
boundary elements and the results are demonstrated as 
spectral amplifications versus dimensionless frequencies, 

2/ cr  (or its inverse, the dimensionless period). In 

which,  presents the angular frequency of the wave. 
Figs. 10 and 11 compare the amplifications obtained by 

the presented VBEMSA algorithm along the canyon with 
those obtained by the above-mentioned work for a 
dimensionless frequency of 1.0 (Ω= 1.0). As can be seen, 

there exists excellent agreements for both vertical and 
horizontal components of amplification. 

Fig. 12 presents the Amplification of surface 
displacements for a semi-circular canyon for different 
damping ratio in the case of an incident SV wave and Ω 
=1.0. Also, Fig. 13 presents the amplification of surface 
displacements for a semi-circular canyon for different 
damping ratio in the case of an incident P wave and Ω = 
0.5. As it can be seen, the damping ratio has considerable 
effects on the amplification and de-amplification potential. 
Also, the results show that damping ratio does not affect 
the pattern of the displacement along the canyon but in 
order to get accurate results of topographic phenomenon, 
these parameters should be evaluated precisely. 

Fig. 14 compares the ground responses obtained at 
points I and O via different time steps in case of an 
incident SV wave. In general, the displacement in the 
canyon is decreasing with damping. 

4.3. Semi-elliptical hill 

This problem was studied in a dimensionless form by 
Alvarez-Rubio et al. [21] for viscoelastic media. A semi-
elliptical hill, as shown in Fig. 15, is subjected to the 
vertically propagating Ricker type P wave. The Ricker 
wave has a predominant frequency of 2 Hz, time shift 
parameter of 0.8 s and maximum amplitude of 0.001 m. 
The hill has a radius of 200 m and height of 400m. The 
shear wave velocity, damping ratio, Poisson’s ratio and 
mass density are 800 m/s, 1/4, 1% and 2.23 ton/m3, 
respectively. For this case, 236 quadratic boundary 
elements were used. 

Fig. 16 compares the amplifications obtained by the 
presented VBEMSA algorithm along the canyon with 
those obtained by the above-mentioned study for a 
dimensionless frequency of 1.5 (Ω=1.5). As can be seen, 
there exist excellent agreements for both vertical and 
horizontal components of amplification. 
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Fig. 10 Amplification of surface displacements for a semi-circular canyon in the case of an incident SV wave and Ω = 1.0. (The symbols 

“Hrz” and “Vrt” represent the horizontal and vertical components of amplification, respectively.) 
 

 
Fig. 11 Amplification of surface displacements for a semi-circular canyon in the case of an incident P wave and Ω = 1.0. (The symbols “Hrz” 

and “Vrt” represent the horizontal and vertical components of amplification, respectively.) 
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Fig. 12 Amplification of surface displacements for a semi-circular canyon for different damping ratio in the case of an incident SV wave and 

Ω = 1.0. (The symbols “Hrz” and “Vrt” represent the horizontal and vertical components of amplification, respectively.) 
 

 
 

 
Fig. 13 Amplification of surface displacements for a semi-circular canyon for different damping ratio in the case of an incident P wave and Ω 

= 0.5. (The symbols “Hrz” and “Vrt” represent the horizontal and vertical components of amplification, respectively.) 
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(a) 

 
(b) 

Fig. 14 Horizontal displacement time histories via different damping ratio for SV wave. (a) point I, (b) point O 

 
Fig. 15 Schematic geometry and discretization of a semi-elliptical hill subjected to vertically propagating incident SV and P waves of the 

Ricker type. 
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Fig. 16 Amplification of surface displacements for a semi-elliptical hill in the case of an incident P wave and Ω = 1.5. (The symbols “Hrz” 
and “Vrt” represent the horizontal and vertical components of amplification, respectively.) 
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Fig. 17 Schematic geometry and discretization of a slope topography subjected to vertically propagating incident SV and P waves of the 

Ricker type. 
 

4.4. Slope topography 

This problem was studied in a dimensionless form by 
Bouckovalas and Papadimitriou [32] for viscoelastic 
media using computer code FLAC. Slope topography, as 
shown in Fig. 17, is subjected to the vertically propagating 
Ricker type SV wave. 

The specific case of uniform soil with slope inclination
60  was analyzed. The shear wave velocity, damping 

ratio, Poisson’s ratio and mass density are 800 m/s, 1/3, 
5% and 2.00 ton/m3, respectively. The Ricker wave has a 
predominant frequency of 3 Hz, time shift parameter of 
0.45 s and maximum amplitude of 0.001 m. 

The problem was solved by using 351 quadratic 
boundary elements. The results are demonstrated as 
spectral amplifications versus dimensionless frequencies,

// 2 HcfH  . In which, f  and   present the angular 

frequency and wavelength of the shear wave, respectively. 
Fig. 18 compares our results at the crest of step-like 

slopes with the respective results from [32] and shows that 
the two distinctly different methodologies of analyses 
(Viscoelastic Boundary Element method here versus 
generalized consistent Finite Difference method in [32]) 
produce practically identical results. 

 

 

 
Fig. 18 The variation of crest amplification factor versus the dimensionless frequency for uniform slopes with 60 . 
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4.5. Semi-circular-shaped ridge 

The purpose for the presentation of this example is to 
illustrate the applicability of the presented viscoelastic BE 
algorithm in performing site response analysis of ridge 
structures. A semi-circular-shaped ridge, as shown in Fig. 
19, is subjected to the vertically propagating Ricker type 
SV and P wave. The Ricker wave has a predominant 
frequency of 3 Hz, time shift parameter of 0.45 s and 
maximum amplitude of 0.001 m. The ridge has a radius of 
200 m. The shear wave velocity, Poisson’s ratio and mass 
density are 800 m/s, 1/3 and 2.23 ton/m3, respectively. As 
far as this case is concerned, 203 quadratic boundary 
elements were used. The amplification of horizontal and 
vertical components of ground motion with respect to the 

free field motion, for a dimensionless frequency of 1.0 in 
the case of an incident SV wave for different damping 
ratios is demonstrated in Fig. 20. 

Fig. 21 presents the time-domain ground responses 
obtained at the top (point I in Fig. 19) and bottom (point O 
in Fig. 19) of the semi-circular-shaped hill in the cases of 
an incident SV wave for different damping ratios, 
respectively. For the incident SV wave, as expected, the 
vertical displacement is equal to zero. 

Also, the amplification for horizontal and vertical 
components of ground motion with respect to the free field 
motion, for a dimensionless frequency of 0.5 in the case of 
an incident P wave for different damping ratios is 
demonstrated in Fig 22. 

 

 
Fig. 19 Schematic geometry and discretization of a semi-circular shaped hill subjected to vertically propagating incident SV and P waves of 

the Ricker type. 
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Fig. 20 Amplification of surface displacements for a semi-circular shaped hill for different damping ratio in the case of an incident SV wave 

and Ω = 1.0. (The symbols “Hrz” and “Vrt” represent the horizontal and vertical components of amplification, respectively.) 
 

 
(a) 

 
(b) 

Fig. 21 Horizontal displacement time histories via different damping ratio for a semi-circular shaped hill in the case of SV wave. (a) point I, 
(b) point O 
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Fig. 22 Amplification of surface displacements for a semi-circular shaped hill for different damping ratio in the case of an incident P wave 

and Ω = 0.5. (The symbols “Hrz” and “Vrt” represent the horizontal and vertical components of amplification, respectively.) 
 

 

5. Conclusion 

In this paper the advanced time stepping BEM for 
transient two-dimensional site response analysis of 
topographic structures is extended to viscoelastic areas. 
Full-space two-dimensional time-convoluted visco-
elastodynamic kernels have been derived analytically and 
applied.  

The accuracy of the visco-elastodynamic kernels as 
well as the applicability and efficiency of the viscoelastic 
BEM algorithm have been demonstrated through various 
classic examples of site response analysis including a 
horizontally layered site, a semi-circular canyon, a semi-
elliptical hill, slope topography and ridge sections 
subjected to vertically propagating incident SV and P 
waves. Since the viscoelastic BEM algorithm is 
completely formulated in the time domain, it forms a basis 

for extending site response analysis of two-dimensional 
topographic structures to non-linear behavior in the future. 
The numerical results confirm that damping ratio does not 
affect the general pattern of the amplification potential of 
the topography but can play a key role in controlling its 
intensity. 
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