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1. Introduction

There is a long history on determination of the bearing

capacity of shallow foundations. Several theoretical and

experimental methods to determine actual bearing capacity of

shallow foundations have been developed in the past decades

[1,2]. The famous triple-N formula of Karl Terzaghi in 1943

that has been widely accepted by researchers is as follows

[1,2]: 

(1)

In this equation, qult is ultimate bearing capacity, c is

cohesion, q is the surcharge pressure, B is the foundation

width (or diameter), γ is soil density and Ni coefficients are

the bearing capacity factors defined as functions of soil

friction angle, φ . 

For shallow foundations over cohesionless soils, the third

factor is the main bearing capacity contributor. Numerous

methods, based on limit theorems, have been developed in

determination of the bearing capacity of shallow foundations,

in particular for the bearing capacity factor Nγ [1-11]. In most

of these methods a plastic region of soil is supposed to form

beneath the foundation at the ultimate bearing capacity. This

ultimate load satisfying the equilibrium-yield conditions can

be found by plasticity theory. Although the third term in the

bearing capacity equation suggests a linear increase in the

bearing capacity with foundation width or diameter,

experimental observations of De Beer (1965) and Ovesen

(1975), and other researchers, shows a different behavior

[12,13]. A decreasing tendency in the ultimate bearing

capacity of shallow foundations was widely observed and

reported in small scale, full scale and centrifuge tests [14-19].

Lately, Kumar and Khatri (2008) performed an experimental

foundation load test along with a numerical study on the

bearing capacity of shallow foundations and stated that the

bearing capacity factor, Nγ, decreases almost linearly with

foundation size on a log-log scale plot [20]. 

Most of the aforementioned attempts have mainly focused

on determination of the ultimate bearing capacity of

foundations. It should be noted that the ultimate bearing

capacity is also deduced from the failure mechanism which

may vary from a general shear failure for a relatively dense

soil to a local shear failure for a loose soil [2,5,16] and hence,
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foundations behavior can be predicted when the subsoil

behavior is well understood. To do this and for many more

applications in soil mechanics by principles of soil plasticity,

a great number of constitutive soil models have been

developed and applied in the literature (Poorooshasb et al.,

1966; Poorooshasb et al., 1967; Lade and Duncan, 1975;

Nova and Wood, 1979; Hamidi et al., 2009; Sadrnejad et al,
2010) [21-27]. Most of these models comprise many

parameters which are rather difficult to be determined by

conventional laboratory tests. Application of constitutive

models in the theoretical prediction of foundations behavior

and numerical modeling of shallow and deep foundations

have been well reported in the literature [28,29]. 

Very recently, Yamamoto et al. (2009) performed a numerical

analysis on the bearing capacity and load-displacement behavior

of shallow foundation on two different sands [30]. Their work

was mainly focused on utilizing the MIT-S1soil model into the

ABAQUS finite element code for the numerical analyses

[30,31]. This soil model comprises of 13 parameters that may be

obtained from extensive experimental tests [30-33]. 

Roscoe (1970) introduced the role of strains in problems

dealing with soil and introduced the Zero Extension Lines

(ZEL) directions along which linear strain increments are

zero [34]. This concept is a useful method in particular for

load-displacement prediction of structures in contact with

soil. This concept was later employed by James and Bransby

(1971) to determine strain and displacement patterns behind

model retaining walls [35]. Habibagahi and Ghahramani

(1979) and Ghahramani and Clemence (1980) calculated the

soil pressures by considering the force-equilibrium of soil

elements between the zero extension lines [36,37]. The

methodology for finding the load-deflection behavior of

foundation and retaining walls on the basis of the ZEL theory

was presented by Jahanandish et al. (1989) [38]. The general

form of these lines were considered in this methodology and

the variations of soil strength parameters c and φ, with the

induced shear strain due to the deflection of the structure

were also taken into account. In 1997, Anvar and

Ghahramani used the matrix method for derivation of

differential equilibrium-yield equations along the stress

characteristics in plane strain condition, and transferred them

along the Zero Extension Lines [39]. This approach was

important since it allowed integration of the equations along

the zero extension directions. In 2003, Jahanandish

considered the more general case of axial symmetry, and

obtained the equilibrium-yield equations along the Zero

Extension Lines by direct transformation, independent from

the stress characteristics [40]. Details of these derivations

can be found in Anvar and Ghahramani 1997) [39] and

Jahanandish (2003) [40]. Development of the zero extension

line method for the more general three dimensional case has

also been made recently by Jahanandish et. al. (2010) [41].

In this research, the ability of the ZEL method is utilized to

predict foundations behavior on frictional soils. General shear

failure mechanisms, with apparent peak strength, and local shear

failure mechanisms without a peak, are expected to be

predictable by this method. In order to find the load-

displacement curves, the relationship between soil mobilized

friction angle and soil maximum shear strain is required for the

ZEL method. Regarding the difficulties in performing triaxial

tests on sand and the difficulties in determination of the model

parameters for existing constitutive soil models found in the

literature,  a simple work hardening/softening constitutive soil

model has been developed in this research based on direct shear

tests results which is a conventional test for cohesionless soils.

This model is capable of predicting both dilative and contractive

soil behaviors from direct shear tests performed at different stress

levels. This model is then incorporated into a developed

computer code to analyze the load-displacement behavior of

shallow foundations. A numerical study is then performed to

show the ability of the model in distinguishing different

foundation behaviors resulted from different failure mechanisms.

2. Plasticity Equations along the Zero Extension Lines

The ZEL method concerns with solution of plasticity

equations, i.e. equilibrium and yield equations, along the ZEL

direction. Using Mohr-Coulomb yield criterion and defining

angle ψ to be the angle between maximum principal stress

direction and horizontal direction as illustrated in Fig. 1a, the

zero extension directions are defined by [39,40]:

(2)

Where ξ=π /4-v/2 , and the minus sign (-), stands for the one

direction and the plus sign (+), for the other which are shown

in Fig. 1b, on a Mohr's circle of strain. Fig. 1c shows the ZEL

directions and stress characteristics for an arbitrary soil

element. Based on Anvar & Ghahramani's (1997) derivation,

the equilibrium-yield equations along the Zero Extension

Lines for the plane strain problem are as follows [39]:

(3)

In these equations, X and Z are the body and/or inertial forces

along x and z directions and dε+ and dε- are length of the

differential elements along the ZEL directions. The values of

α, β and ζ are given by:

(4)

Based on Jahanandish (2003) derivation, the final form of

equilibrium-yield equations along the ZEL directions for the

more general case of axial symmetry is [40]:
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(5a)

In these equations, T is the radius of Mohr circle for

stress, and n is an integer equal to 1 for the axi-symmetric

problems and 0 for the plane strain case.  fr and fz are expressed

by:

(5b)

As mentioned; these equations are more general so that those

for plane strain can simply be deduced from them by setting

n=0 and T=S sinφ+Ccosφ. Note that r is the measure of the

radial distance for the axi-symmetric problem.

Since the Zero Extension Lines work as rigid links between

their start and end nodes, the displacement of any ZEL

segment should be normal to this segment and therefore, the

following expression is resulted [39,40]:

(6)

In this equation, u and v are lateral and vertical

displacement increments along r and z respectively. These

equations can be written in a finite difference form and if a

displacement boundary is known, the strain and displacement

fields can be found. It should also be mentioned that the

variation in soil strength parameters c and φ has also been

considered in the ZEL equations. Variation in c and φ can be

due to non-homogeneity of the soil mass. It can also be due

to the difference in shear stain at different points of the soil.

This later relation has already been used in obtaining the

load-deflection behavior of structures in contact with soil

[36-40]. It requires the relationship between soil maximum

shear strain and sinφmob. In this research a constitutive soil

model has been implemented in the ZEL method describing

soil behavior under different stress levels. The ZEL equations

can be solved by numerical techniques in a triple point

strategy. Details of such solution technique has been

described by Anvar and Ghahramani (1997) and

Jahanandish, (2003) [39,40].

Computation of the Deformations
The main property of the ZEL net can be employed to find

the velocity field and for a given deformation boundary

condition, the generated displacements in the ZEL net can be

computed using the finite difference form of Eq. 6 for any two

successive points. For example a rotating boundary is shown

in Fig. 2. The left boundary is held fixed against translation. To

find the final position of point, say, B2 after deformation it is

sufficient to rewrite Eq. 6 in a finite difference form. Knowing

the displacements of points A2 and A3, the displacements of

point B2, i.e., uB2 and vB2 will be obtained [39,40]. Appendix

A represents a summary of the solution technique of these

equations. 

3. Developed Constitutive Soil Model

The developed constitutive soil model in this work is

expected to be a simple model conforming to the requirements

of the ZEL method. In this model the mobilized shear strain is

related to the mobilized shear strength which can then be

easily converted to the mobilized friction angle, φmob., required

by the ZEL method. This model is primarily based on the

direct shear tests results which are common for most of

granular soils, regarding difficulties involved in performing

triaxial tests on such materials. One of the basic concepts

behind this model is the hypothesis presented by Wood (1990)

and Atkinson (2008), in which, soil behavior is related to the

angle of dilatation [42,43]. The framework of Lade and

Duncan (1975) in developing a hyperbolic work hardening

constitutive soil model for sand is also considered and

followed in this work [24]. 

Simple Shear and Dilation Model
Fig. 3a shows the simple shearing and dilation model of a
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Fig. 1. Mohr circles of stress and strain: a) Minor and major principal stresses and b) Minor and major principal strains with
ZEL directions and c) Directions of stress characteristics and the Zero Extension Lines
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Fig. 2. A schematic deformed ZEL net



sliding object over an inclined rough surface which is

presented by several authors (Wood, 1990; Atkinson, 2008)

[42,43]. Required shear force to overcome the net mobilized

horizontal forces, due to surface roughness and due to

inclination depends on surface coefficient of roughness and

inclination. This force may be equal to, more or less than the

frictional force resulting only from the roughness of the

surface. Fig. 3b shows the application of this model for dense

soils in a direct shear test with resulting soil behavior depicted

in Fig. 3c. According to this hypothesis, the mobilized soil

friction angle, φmob., can be considered as a resultant of critical

state friction angle,  φc.s., in which no volume change occurs

during further deformation, and soil angle of dilation, υ,

describing the dilatational tendency of soil when it is sheared.

Accordingly, the following definitions could be made:

(7a)

(7b)

(7c)

In these equations, υ is soil angle of dilation which is

equivalent to the inclination, i, of the sliding surface, δv and δh
are vertical and horizontal displacement increments, φc.s. is the

critical state friction angle which is mobilized when there is no

further volume change (no dilation and no contraction) and it

corresponds to the intrinsic surface friction, µ, in a case of

horizontal surface (with no inclination) in the previous

hypothesis, N is the normal force and T is the shear force

acting on the sliding surface. 

The major fact is that although φc.s. is a constant material

parameter, v is a state dependent parameter that varies with

shear strain and stress level and hence, mobilized soil friction

angle varies during a shear test on a frictional soil [42,43].

Therefore, absolute value of soil mobilized friction angle can

be considered to be the sum of soil critical state friction angle,

φc.s. which is a constant value and soil dilation angle which

varies during soil shearing. It has been also well observed and

reported in the literature that soil behavior is stress level

dependent and a dense soil may demonstrate a loose soil

(contractive) behavior when tested at sufficiently high stress

levels (Meyerhof, 1950; DeBeer, 1965; Lee and Seed, 1967;

Bolton, 1986; Gan et al., 1988; Maeda and Miura, 1999;

Budhu, 2007; Kumar et al., 2007) [44-51]. As a result, a

dilatational behavior is expected under relatively low stresses

whereas a contractive behavior may be observed under

relatively high stresses for a certain soil type in both triaxial

and direct shear tests. 

In order to describe the behavior of foundations over a dense

soil with stress level dependency consideration, an attempt

should be made to derive a constitutive relationship linking

plastic strain to the current stress state. Therefore, it is

necessary to develop a corresponding constitutive soil model

capable of capturing the actual dilative or contractive soil

behavior under different stress level states. This model can

then be utilized in an appropriate analytical code, which is the

ZEL method in this study. 

Requirements of the Constitutive Soil Model
Regarding soil plasticity theories, the total strain in a soil

element is the sum of the elastic and plastic parts:

(8)

in which, the superscripts e and p indicate elastic and plastic

strains. While the elastic strains can be computed by the use of

elasticity theories, the plastic strains are relatively difficult to

be determined. It is conventional to consider the incremental
strains rather than the total strains. Despite this obvious fact

that the plastic strains may possibly become quite large, the

small-strain definitions are used. Most of engineering

materials can exhibit increase in strength beyond the elastic

limits. This phenomenon is called hardening, whereas this

behavior is called softening when materials show a decrease in

strength during progressive straining after the peak strength is

reached. As a consequence, for a complete elasto-plastic

constitutive model, it is necessary to include the following

parts (Lade and Duncan, 1975) [24]:

• Elasticity parameters and relationships to find elastic

strains.

• A yield criterion such that if the soil is subjected to change

in stress presented by points inside the yield surface, the soil

deforms elastically, whereas if the changes in stress tend to

cross the yield surface it will simultaneously yield plastically

and deform elastically.
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Fig. 3. Application of the sliding on inclined rough surface model a) Inclined rough surface with frictional irregularities, b)
direct shear box and mobilized friction angle and c) direct shear test results



• A flow rule and plastic potential function which relate the

relative magnitudes of the strain increments to stresses.

• A work-hardening/softening law.

The model parameters are assumed to be determined based

on direct shear test results performed at different normal

stresses and hence, the stress space may be defined by only

two independent stress (or strain) variables, τ and  σn, which

are shear and normal stresses respectively. Definitions of

model parameters will be presented first. The establishment of

the model is then explained afterwards.

Stress Ratio
This is a normalized form of the shear stress to the vertical

stress which is used extensively in this developed constitutive

model defined as follow:

(9)

Shear and Axial Strains
Without violating the generality and for consistency between

shear and vertical strains and also for convenience, it is

assumed that the horizontal displacement on the top of the

specimen (at the shear surface) is linearly distributed over the

height of the sample in a direct shear test box. Therefore, the

shear strain is assumed to be equal to the ratio of horizontal

displacement to the height of the box. In the other words, the

so called box shear strain, γbox, is used instead of soil shear

strain,  γsoil, which are shown in schematic representation of a

direct shear test in Fig. 4. 

It is worth mentioning that the shear strains formed in the

sample is often much more than box shear strains. A number

of studies have been made to relate box shear strain to soil

shear strain by defining a shear band thickness, ts, as a

function of soil particles size in which, major part of soil

straining occurs. An extensive study of Cerato (2005) shows

that this shear band is between 10 to 20 times of the average

soil grain size, D50 [18]. 

As a result, a so called shear scaling ratio, rs, can be defined

as follow:

(10)

This ratio is expected to be more than unity. In the following

procedure, the ratio of shear and vertical strains are required

for the model and hence, the strain ratio is not a matter of

concern until the model is implemented in the ZEL method,

where, the scaling ratio can be used to find actual soil shear

strain. This ratio can be defined using any suggested equations

for shear band thickness in most of practical cases, but care

should be taken to the sensitivity of the foundations load-

displacement curve to this ratio. It is recommended to adjust

this factor by comparing the predicted and observed load-

displacement curves of a model footing load test to calibrate

the model. 

Elastic Behavior
The model is supposed to represent and predict only plastic

behavior of the soil regarding the requirements of the ZEL

method in which, soil is supposed to yield even at the initiation

of the loading. Thus, elastic strains are assumed to be

reasonably small and insignificant. Elastic deformations

however, can be found from the equation presented by Lade

and Duncan (1975) assuming zero Poisson's ratio as follow

[24]:

(11)

In this equation, Eur is the unloading-reloading modulus, σ3
is the confining pressure (in a triaxial test), Pa is the

atmospheric pressure and n is a coefficient determined from

laboratory triaxial tests results.  Therefore, other elasticity

coefficients for shear stress-shear strain relationship can be

simply obtained. For example, shear modulus, G is equal to

half of the Young's modulus, i.e., G=0.5Eur which can be used

to find shear strains.

Yield Criterion
For simplicity and consistency with the assumptions

presumed in the ZEL method, the yield criterion is suggested

to be similar in shape to the well-known failure criterion of

Coulomb as follows:

(12)

where, k1 is a variable ranging between 0 (at the initiation of

loading) and tan φmob at higher stages of loading. Also,  φmob
varies during soil shear and it can reach an ultimate value of

φpeak at peak strength and a constant value of  φc.s. where

experiencing sufficiently large shear deformations. The critical

state soil friction angle,  φc.s., is independent of stress level and

supposed to be a material constant for a certain soil type. The

factor k1 which is a function of soil mobilized inter-granular

friction angle, can also be considered as a function of soil

critical state friction angle,  φc.s., and soil dilation angle , v.

The yield surface is assumed to expand with the stress level

during the state of loading. In an unloading case, the material

behavior is supposed to be elastic which is not a concern in the

ZEL method. 

Plastic Potential Function
The plastic potential function incorporated in this model is

presumed to be similar in shape to the yield function, as

assumed by Lade and Duncan (1975) and many other

researchers:
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Fig. 4. Representation of box and soil shear strains in a direct
shear test



where, k2 is a model parameter that will be defined later from

laboratory tests. Therefore, dissimilarity between k1 and k2,

suggests a non-associative flow rule assumption. It will be

shown that this parameter has a physical meaning. As a result,

regarding plasticity theory and normality law, the plastic strain

increments can be obtained as follows for any component of

strains in a general strain configuration [52]:

(13)

According to the previous notation for stresses in a direct

shear test, predefined incremental strains can be found as

follow:

(14a)

(14b)

In these equations, dλ is plastic multiplier, εp is the

incremental plastic normal strain and γp is the incremental

plastic shear strain. If the value of dλ is defined for a given

stress ratio, f, incremental plastic strains can be related to

incremental stresses and vice versa. Experimental data show

that the value of k2 has a physical meaning. In fact, it is a

representation of the rate of dilation when the soil undergoes

shear deformations:

(15)

Experimental evidences show that when the value of k2 is

plotted versus the stress ratio, f, they would be located on a

straight line. As an example, Lade and Duncan (1975) 

reported similar observation by performing a triaxial test on

sand [24]. To demonstrate this fact, direct shear tests results of

Kumar et al. (2007) on Bangalore Sand are presented which

have been tested at different relative densities and under

different normal stresses in a direct shear box apparatus of

60mm in width and 30.77mm in height (Kumar et al., 2007)

[51]. Sand properties are listed in Table 1. As per the Indian

Standard for soil classification, this soil is classified as poorly

graded sand [51]. Direct shear tests results on this sand at a

relatively dense state is presented in Fig. 5. Stress-strain curves

at three different vertical stresses, i.e., 50kPa, 200kPa and

800kPa which cover almost the entire range of the tested

samples, have been utilized as plotted in Fig. 6. 
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Fig. 5. Direct shear tests results on Bangalore Sand at  =16.19kN/m3 (Data from Kumar et al., 2007)
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Table 1. Bangalore Sand properties (Data from Kumar et al., 2007)
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Fig. 6. Selected direct shear test data at γ=16.19kN/m3



Values of k2 have been computed and observed to obey a

linear relationship when it is plotted versus the stress ratio, f.
This is shown in Fig. 7. Therefore, having known the

relationship between the parameter k2 and the stress ratio, f, the

value of k2, defining the plastic potential function, can be

evaluated at any given stress ratio. It can be expressed by the

following equation:

(16)

In this equation, A and H are model constants that can be

determined experimentally, for instance, A being the slope of

the k2-f line, and H the vertical intercept. 

Work-Hardening/Softening Law
At this point, it is necessary to find the magnitudes of strain

increments caused by the stress increments. The work used to

produce plastic yield is termed the work-hardening law. They

also stated that the adaptation of an isotropic hardening law

implies that the yield surface can expand uniformly and the

hardening degree doesn't depend on the stress path.

Therefore there exist a unique relationship between the total

plastic work and the degree of hardening which can be

expressed by a stress ratio [24]. Total plastic work can

also be expressed as follow according to plasticity 

theories [52]:

(17)

In this equation, is the plastic work done per

unit volume of the soil element over the strain increment, dεijp.

By differentiating both sides of this equation and substituting

the corresponding values for plastic strain increments the

following expression can be resulted:

(18)

For the case of direct shear test where one may use two

independent stress variables this equation may be rewritten as

follow:

(19)

This is a fairly simple equation relating the value of dλ to the

plastic work increment, dWp, at each increment of loading.

Now, if the plastic work is related to the stress ratio, f, a

complete constitutive model can be established. To do this,

first the total normalized plastic work (Wp/Pa) done in the tests

are plotted versus the values of the stress ratio, f, during the

tests. Pa is the atmospheric pressure used for non-dimensional

representation. This is shown in Fig. 8. 

Looking at the plotted data, one may arrive at the conclusion that

the Wp-f relationship can be approximated by a 3rd-order

hyperbolic function that can provide both forms of dilative and

contractive behaviors. The idea behind this assumption is that

such function can capture a peak value of f and provide a constant

value for this parameter at reasonably large shear strains.

Therefore, the following form of this function is suggested:

(20)

In this equation, a, b and c are model parameters that should

be determined from laboratory test results. There is a brief

explanation on the role of each of these parameters in the

following parts:

Parameter a:
This parameter is rather more important than the others and

controls the final part of the f-Wp curve, i.e. the value of f at

infinity. Since at infinity (very high shear strains), f approaches the

value corresponding to the soil critical state condition (or at

failure), this parameter should be set equal to f at the critical state:

(21)

Therefore, parameter a can easily be determined from

experimental data.
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Parameters b:
This parameter controls the magnitude of the maximum

value of the stress ratio, f. It can be seen in Fig. 9a for constant

values of parameters a and c. This parameter should be

considered in conjunction with the last parameter, c.

Parameter c:
This parameter controls the location of the peak value in

conjunction with the parameter b. The role of the parameter c
is shown in Fig. 9b which affects the extension, sharpness and

in general, the shape of the hyperbola. To provide a brief

representation of this parameter, the derivation of the

suggested hyperbolic equation is as follow:

(22)

At the beginning of the curve, the slope of the curve is as

follows:

(23)

There is also similar relationship for the peak value in which,

the first derivative of the hyperbola is zero. Hence, there

would be two equations for two unknowns, i.e. b and c for

each test and hence, they can be determined. 

Therefore, these parameters can be determined as functions

of stress level (i.e. vertical stress) from laboratory shear tests.

In summary, to determine these parameters, one should find

the peak value of the plastic work at each test and compute the

initial slope of the f-Wp curves.

As a conclusion, the model parameters can be summarized as

follows:

• Elastic coefficients (Similar to other linear elastic models

which are not required here).

• Yield criterion parameters: k1= tanφmob. 

• Failure criterion: k1-failure=tanφc.s. (from laboratory shear

tests)

• Plastic potential function parameters: k2 (function of f,
expressed in terms of A and H)

• Work hardening/strain softening law: a, b and c coefficients

o a= tanφc.s.=k1-failure
o b and c from tests results (initial slopes and peak value of

the Wp-f curves, functions of vertical stress)

Therefore, there are total of 6 parameters which can be

summarized into 5 independent parameters: A, H, tanφc.s.

(equal to a), b and c.

Computation Steps
After evaluation of the model parameters, it is necessary to

follow a computational procedure to find the stress-strain

curve of a certain test. To do this the following steps should be

followed:

• Given values are: σv, a (equal to tanφc.s.), b, c (as functions

of σv/Pa), A and H.

• Application of a shear stress increment, dτ
• Finding the total value of the shear stress, τ=τ0+∆τ , and τ0

is the previous value of τ.

• Computing the stress ratio, f=τ/σ
• Computing the value of k2.

• Finding appropriate value of Wp corresponding to the

current stress ratio, f.
• Computation of the plastic work increment: ∆Wp=Wp-Wp0,

in which, Wp0 is the plastic work of the previous step.

• Computing the plastic potential function at the current

stress ratio.

• Finding corresponding value of ∆λ.

• Computation of the shear strain and axial strain based on

plasticity equations.

This procedure can be simply programmed for practical

purposes. A computer code in MATLAB has been provided for

the computation procedure and used as a supplementary

function in a developed code for solution of the ZEL

equations.

Verification
These parameters have been evaluated for the tests

performed by Kumar et al. (2007) and shown in Table 1 and

Fig. 10. It is realized that the model parameters are in a very

reasonable consistency when a power law equation is fitted to

them on a log-log scale plot. Test results at 50, 200 and 800kPa
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Fig. 9. Role of the parameters in the suggested hyperbolic function in development of the constitutive model: a) variations of b and b)
variations of c



vertical stresses were used for model calibration and the

results of 400kPa vertical stress were kept for verification.

Also, using the plot of k2 against the stress ratio, f, the

following relationship can be obtained:

k2=0.3f-0.18 (24)

Using these parameters and equation for k2, plastic work

curve for each test is computed and plotted in Fig. 11 for

vertical stresses of 50, 200, 800kPa (used for calibration) and

400kPa (used for verification). It can be well observed that the

model can reasonably capture the plastic work variations. 

Now, the model is utilized to provide a complete stress-strain

curve. Using these values, an incremental shear stress was applied

for each normal stress at each test and the corresponding values of

plastic strain increments were computed. A comparative plot of

the model prediction and experimental results are shown in Fig.

12. In this figure, stress-strain curves at the vertical stresses equal

to 50 and 200kPa which were previously used for model

calibration and at the vertical stress of 400kPa, which were taken

to verify the model, are depicted. The ability of the model in

prediction of the test results seems to be reasonable.
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Table 2. Evaluation of the model parameters in each test

Fig. 10. Evaluation of the model parameters
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Fig. 11. Calibration of the model parameters

Fig. 12. Direct shear tests, experimental and model predicted results: 
a)  σv=50ka (for calibration), b)  σv=200ka (for calibration) and c)  σv=400ka (for verification)



4. Foundations Behavior Investigation

As stated earlier, foundations behavior is stress level dependent

which can be related to the foundation size. The developed

constitutive model can provide a suitable tool to describe both

dilative and contractive soil behaviors and as a result, can be

utilized to predict foundations behavior. The ZEL method which

can consider the stress level dependency of soil shear strength

parameters is employed to investigate foundations behavior. The

developed constitutive soil model has been implemented in this

method in which, the relationship between sinφmob. and γxy is

available at every stress level. Numerical investigation of

foundations behavior has been performed by using the direct

shear tests results presented earlier. 

Contribution of the Constitutive Model and
Computation Procedure

Computation procedure is as follow:

• First it is necessary to construct the ZEL field. It can be done

by simultaneous solution of the finite difference forms of the

ZEL equations presented in Appendix A. A computer code has

been developed in this research to solve these equations. It

should be noted that the boundary condition of Bolton and Lau

(1993) has been adopted for computations in which, formation of

a relatively rigid wedge (or cone, in axi-symmetric problems)

beneath the foundation is assumed [6]. According to the test

results and predictions of the model, average soil angle of

dilation was assumed to be a function of stress level ranging

approximately between 5 to 15 degrees. This is shown in Fig. 13. 

• At an arbitrary displacement increment in the

analysis, e.g. vertical displacement of the foundation,  the

velocity and strain fields are obtained by the aid of the ZEL

method. Outline of such an analysis is described well in the

literature [36-40]. Therefore, at an arbitrary foundation

displacement, the shear strains are readily determined within the

soil mass. Also, the previous values of soil mobilized friction

angles and stresses are known. These values can be used as

initial values to find updated stresses and corresponding

mobilized friction angles at each node of the ZEL net. 

• The input parameters for the constitutive soil model which

is implemented in the ZEL method at the ith step of

computation are as follow:

o Si-1, mean stress value of the previous step.

o φi-1, mobilized friction angle of the previous step.

o γmax, maximum shear strain generated in the current step.

• Now, having known the stress state of the previous step, it

is required to find the corresponding stress state (and

mobilized friction angle) for the current step.

• First, it is necessary to find the direction of the shear plane.

As stated earlier, it has been found that this plane makes an

angle equal to µ=π/4-φmob./2 with the minor principal stress

plane. Therefore, according to Fig. 14, the shear stress, τsp, and

normal stress (required to compute model parameters), σsp, at

the shear plane can be found easily as follow:

τsp=(Ssinφmob)sin2µ
σsp=S-(Ssinφmob)sin2µ

• Second, the corresponding value of the shear strain at shear

plane, γmax, should be determined knowing the angle, by the

following relationship according to Fig. 14b:

γmax=γ maxsin2µ

Having known the vertical stress, constitutive model

parameters, i.e. b, c and k2, which are functions of vertical

stress and stress ratio, can also be determined. Other

parameters, i.e. a (equal to tanφc.s.), A and H, are stress level

independent and remain unchanged. Initial value of the

mobilized soil friction angle may be used for primary results

and after sufficient iterations, the corresponding value of the

mobilized friction angle will be found which is the output of

the model into the ZEL method.

• The procedure is repeated for next and next steps of loading

and displacement to find a complete load-displacement curve

for the foundation.

• Regarding the shear box size and soil average grain size, a

shear strain ratio, rs=3 was adopted for the analyses.
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Fig. 14. Mohr's circle of a) stresses and b) strains; to find σsp and γsp



Results
Behavior of foundations of different sizes on the presented

relatively dense sand have been investigated. Fig. 15 shows the

ZEL net, load-displacement curve and the velocity field for a

circular foundation 1.0m in diameter having a rough base. There

is an obvious peak corresponding to a general shear failure

mode of rupture.  Fig. 16 shows similar results for a relatively

large foundation of 50m diameter. It can be seen that there is

rather no apparent peak value in the load-displacement curve

and hence, the failure mechanism should be more localized.

Load-displacement curves of different size foundations are

shown in Fig. 17 for comparison. The figure indicates a peak in

load-deflection behavior of small footings which diminishes

with increase in footing size. This is consistent with the

observations of Clark (1996) in his centrifuge tests [16].  

A plot of the foundations ultimate bearing capacity obtained

from the analyzed cases in this study is provided and shown in

Fig. 18 on a log-log scale. The results indicate that the bearing

capacity decreases almost linearly with logarithmic increase in

foundation size. Such fact is in agreement with experimental

observations found in the literature.

In many practical problems, the bearing capacity of shallow

foundations is often computed from the bearing capacity

equation. In more important projects, it is conventional to perform

a small scale or plate load test and extrapolate the results to larger

foundations due to difficulties in performing full scale load tests.

There are several delusions in using theoretical methods or

extrapolation of small scale tests results for larger foundations as

stated by the researchers [15,53,54]. It is suggested by Fellenius

and Altaee (1994) that when the small scale footing load tests

results are extrapolated, a stress scale should also be considered

rather than a geometric scaling alone [15].

The effect of stress level or foundation size has been

considered in the zero extension line method for calculation of

ultimate bearing capacity [55,56], but the load-deflection

curve of a footing provides a more meaningful picture of its

behavior as well as its capacity in bearing the loads at the

ultimate states. Since the main goal of the current work was to
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Fig. 15. Results for a circular foundation with rough base, (D=1.0m): 
a) ZEL net, b) Velocity field and c) Load-displacement curve

Fig. 16. Results for a circular foundation with rough base, (D=50m): 
a) ZEL net, b) Velocity field and c) Load-displacement curve
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Fig. 17. Comparison between different size foundations behaviors
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Fig. 18. Variations of the ultimate bearing capacity ratio with
foundation size



present a soil constitutive model for implementation into the

zero extension line method, verification has been made for the

model itself. It was also shown that the predicted load-

deflection behavior of small and large footings is different

from each other. This behavior is consistent with the

observations made in centrifuge tests [16]. Quantitative

verification of the predictions of the model against full scale

tests that has been performed up to failure states was not

possible in the course of this study. Result of such

investigations has been presented independently [57,58]. 

5. Conclusions

The ultimate bearing capacity of shallow foundations has been

well recognized and the triple-N equation of Karl Terzaghi

(1943) is widely used by assuming a constant soil friction angle,

to determine the ultimate bearing capacity. However,

observations indicate the stress level dependency of soil friction

angle, and thus, a unique relationship between the ultimate

bearing capacity of shallow foundations and soil friction angle

does not exist. As a matter of fact, variations of soil friction

angle arising from stress level dependent soil behavior, should

be considered in prediction of foundations behavior. In this

research, a rather simple work hardening/softening constitutive

soil model is developed which is capable of capturing both

dilational and contractive soil behaviors. Model parameters can

be determined from standard laboratory direct shear tests on

frictional soils performed at different vertical stresses. The

model was formulated and verified with experimental results of

Kumar et al. (2007) data, showing reasonable advantages. This

model was then implemented into the ZEL method to

investigate the load-displacement behavior of shallow

foundations. Utilization of this model enables the ZEL method

to capture different modes of foundations behavior due to

foundation size effect. A numerical study revealed that increase

in foundation size leads to a transition in foundations behavior

and modes of failure, from general shear failure to localized

shear failure mechanism. Values of the ultimate bearing capacity

of foundations plotted versus foundations size on a log-log scale

coincide with the previous experimental observations indicating

a linear relationship, i.e., the decrease in the bearing capacity

with increase in the foundation size. 

In conclusion, developed constitutive soil model can be

reasonably employed in the ZEL method to describe and predict

actual foundation behaviors. This model is relatively simple and

requires only the direct shear test results for calibration, which

is a simple and commonly used test for frictional soils. 
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Appendix A: Finite Difference Forms of the
Equations and Flowchart of the Procedure

There are four equations and four unknowns at each point, e.g.,

for an arbitrary point like C. Calculations should be performed

to find the unknowns at this point from existing data of the

previous two points, namely A and B. For terms without a

subscript index, the averaged values between two successive

points should be used. For example, angle ψ is initially set equal

to  ψA and after the first round of iterations, it is set equal to

averaged value of  ψA and  ψC along the positive direction. The

finite difference forms of the equations are as follow:

(A1)

Jahanandish (2003) Equations:
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Displacement Equations:

(A4)

Shear strain computation can be done by the following

equation [58]:

Therefore, the finite difference form of this equation will be as follow:

Finite difference forms of the ZEL equations are programmed

as supplementary functions in the developed computer code.

The following supplementary functions have been coded:

• Function ZELCALC: In this function, the ZEL directions

are first computed from Eq. A1 and then, the stresses are

computed from Eq. A2 and Eq. A3. An iterative procedure is

carried out for convergence since the values of ψ are stress

dependent and therefore, coordinates of the third point, C,

depend on the computed stresses.

• Function DISCALC: In this function, the displacement

field is computed. When the displacement boundary is known,

a similar triple point strategy is performed to solve two

unknown displacement components of point C, namely, uc and

vc by Eq. A4. In the same function, maximum shear strains at

each point are also computed by using Eq. A6.

• Function PHIFUN: In this function, a soil model can be inserted

to compute the appropriate values of soil mobilized friction angle

as a function of both stress level and maximum shear strain.

A general iterative procedure is also carried out over the entire

loop (at each displacement step) until no significant change is

observed in the values of stresses and other unknowns. The

flowchart of the calculation procedure is outlined below:
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Fig. 14. Mohr's circle of a) stresses and b) strains; to find σsp and γsp
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