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1. Introduction 

Once the liquefaction potential assessment suggests that the

soil is likely to liquefy, it is critical to estimate the

consequences that can be expected, in terms of ground

movements or lateral displacements. During lateral spreading,

the integral masses of surficial soil displace downslope or

towards a free face along a shear zone that has formed within

the liquefied soil layer. This displacement of the soil mass can

vary from a few centimeters to several meters and cause

considerable damage to engineered structures and lifelines.

The amount of displacement due to lateral spreading depends

on physical and mechanical characteristics of the soil layers at

the site, water table depth, magnitude of earthquake, distance

from the site to the energy source, ground slope conditions,

thickness of the critical layer, and attenuation properties of the

in situ soil. Therefore an engineering method is needed to

estimate the aftermath ground movements.

In the recent few decades, a series of techniques, ranging

from simple empirical relations to complicated numerical

methods, have been proposed. This paper reviews the different

assessment methods of ground movements due to lateral

spreads, and then proposes an engineering relation, using a

credible data set of case histories, to predict the value of lateral

spreading.

2. Methods of analysis of lateral spread

The methods of analysis of ground displacements due to

lateral spreading can be categorized in four groups: (i)

simplified analytical methods (ii) numerical methods (iii)

empirical relations based on case histories (iv) laboratory and

centrifuge studies. These methods are summarized in Table 1

and discussed in the following.

2.1. Simplified analytical methods

2.1.1. Newmark's sliding block analysis
Newmark [26] introduced a method to analyze earthquake-

induced sliding of slopes using sliding block model. This

model estimates the displacement by double integration of

acceleration when it exceeds the yield accelerations. Several

relationships were proposed based on Newmark’s technique

[1 and 2], to estimate lateral spreading. 

Scott et al. [3] back analyzed 39 well-documented
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liquefaction-induced lateral spreads in terms of a mobilized

strength ratio, su(mob)/σ′vo, using Newmark sliding block

method. Based on the results of inverse analyses, they found

that the back-calculated strength ratios mobilized during

lateral spreads can be directly correlated to the normalized

cone penetration test tip resistance and standard penetration

test blow count.

In recent years, the sliding block model has been less

accounted for evaluation of lateral spreads induced by

liquefaction mainly because of the following difficulties: 

• The task of determining the yield acceleration through

finding the exact shear strength of a liquefiable soil is

challenging in itself. 

• Without an exact definition of slip surface, determination of

yield acceleration would be complicated due to its changes

during deformations following liquefaction. 

• Occurrences of lateral spreading could continue after

stopping the earthquake shaking which cannot be modeled by

Newmark model.

Although there are some research studies indicating

successful prediction of ground movement using Newmark

model, this method has not been wildly used by engineers to

predict ground movement caused by lateral spreading. 

2.1.2. Minimum potential energy model
Towhata et al. [4] proposed an analytical model to 

estimate the displacements due to lateral spreads using

minimum potential energy theory. In this model, the position

of soil layers is determined based on minimum energy

potential and Lagrangian equation of motion. They assumed a

sinusoidal equation as a pattern for horizontal deformations of

a vertical cross section in the liquefied deposit, while

deforming volume of liquefied soil was assumed to be

unchanged.

Tokida et al. [5] proposed simplified version of this method.

In their model, the maximum of lateral displacement takes

place at the center of the block which the value of

displacement can be easily predicted. This method has also

following major disadvantages:

• It is not possible to model the steep free faces, usually

presented in the field.

• The model is only capable of predicting the maximum or

ultimate displacements.

This model is also only capable of predicting the maximum

or ultimate displacements and has been less implemented by

engineers compared with Newmark sliding block model.

2.2. Numerical Method

In order to model all the details of liquefaction- induced

ground movement, a proper numerical model should be able to

simulate seismic excitation, softening of the soil due to

increase in pore water pressure, rapid decrease in shear

strength, continuation of displacement after dynamic loading,

and reconsolidation caused by drainage of excess pore

pressure. Hamada et al. [27] were among the first researchers

to evaluate ground displacement induced by liquefaction,

using finite element technique. They employed 2D finite

element technique to model a lateral spread in Noshiro, Japan.

However, their model was highly dependent on the assumption

of elastic behavior for the material. Using numerical methods,

other researchers have made different assumptions for

modeling the lateral spreads. An advanced analysis was

performed by Finn et al. [7 and 8], using TARA-3, and TARA-

3FL code. Yasuda et al. [28] also introduced a very simple

finite element technique. In summary, varieties of simplified

finite element schemes have been used to model liquefaction

and lateral spreading. Numerical studies have shown limited

success when compared to observed field behavior.  Numerical

methods have not been popular for the estimation of

deformation.

2.3. Empirical methods (Approaches based on case histories)

These methods have been used extensively by engineers

because of simplicity. The engineers use these simple methods

vastly. As shown in Table 1, two methods can be designated to

estimate the lateral spreading using empirical relations:

2.3.1. MLR method (empirical and semi – empirical method)
There are empirical and semi-empirical methods available to

estimate lateral displacement induced by liquefaction. The

Multi Linear Regression (MLR) method, developed based on

regression of collected data has been implemented by many
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Table 1 Summary of the methods of displacement assessment due to lateral spreading



researchers such as Bardet et al. [11, 12 and 13], Youd et al.

[14], Shamoto et al. [15], Zhang et al. [16], Zhang and Zhao

[17], Hamada et al. [27], Rauch and Martin [10] and Youd and

Perkins [29].

Hamada et al. [27] proposeda simple empirical relationship

for estimating lateral spreads, based on 60 data sets, most of

them collected from the Noshiro earthquake.As can be seen in

Table 2, this equation is very simple and easy to use. The

deficiency for this approach is that it has been proposed based

on a very limited number of data. The Hamada et al. [27]

method suggests that only two parameters from the site

geometry affects the value of lateral spreading, and other

geotechnical and seismic parameters are not accounted. As a

result, this equation is not general enough to be used for other

sites.

Youd and Perkins [29] proposed a simple relationship based

on the data collected from western United States and Alaska

historical earthquake records. The value of displacement (LSI)
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Table 2 Summary of the proposed equations to evaluate ground displacements



is estimated based on the distance to energy source of the

earthquake and Moment Magnitude (M) with the upper limit

of 100 inches. This model assumes that if the liquefaction

occurs and it causes lateral spreading, the amount of ground

displacement depends on only seismic parameters (R, M). This

equation had attracted the attention of engineers at its time.

While this equation might have been suitable for estimating

the lateral spreads in the western part of USA but it also lacked

enough generality and so it did not become popular

worldwide.

Rauch and Martin [10] considered liquefaction-induced

lateral spreading as slides of finite area instead of individual

displacement vectors. Using multiple linear regression

methods, Rauch proposed three different equations for

estimating the average lateral deformations, which were

referred to as regional, site, and geotechnical equations. This

model was based on the MLR analysis of a total of 78 data

points from 16 different earthquakes. The methodology of this

model was to subdivide the liquefied area into separate slide

zones, to define the length and area for each slide, and then to

consider the average liquefaction-induced displacement

vectors and the average borehole soil properties within these

slides. The quality of the fitted results for the three equations

of this MLR model was reported as R2=50.9% based on 71

data points for the regional model, R2=67.0% based on 58 data

points for the site model, and R2=68.8% based on 45 data

points for the geotechnical model.

Shamoto et al. [15] employed laboratory-based estimates of

liquefaction-induced limiting shear strains coupled with an

empirical adjustment factor to relate these laboratory values to

the observed field behavior. The predicted lateral

displacements, based on laboratory limiting shear strains, are

multiplied by a factor of 0.16 to predict the lateral

displacements of non-sloping ground.

Bardet et al. [11, 12 and 13] proposed six relationships with

four and six parameters using the data reported by Bartlett and

Youd [33 and 34]. The equation with four parameters is

suitable for conditions with limited borehole data, while the

equation with six parameters is more accurate than that with

four parameters.

The model of Youd et al. [14], originally developed in 1992,

was derived using MLR method for the data collected from

earthquakes in Japan and USA. The model has two different

equations for free face and ground slope (Table 2). 

Because of using wide range of data from different

earthquakes and also employing three parameters of; geometry

of the site; geotechnical data; and the characteristics of

earthquake, this model could find more popularity among the

geotechnical engineers. However, there are still some

limitations in its application. For instance, the free face

equation is used when 5 ≤ W ≤ 20%, while the ground slope

equation is valid when W ≤ 1%. The discontinuous bordering

system for the values of W provides no explanation for the

cases with 1<W<5%.

It should be also noticed that, the estimations made by this

model for Chi Chi earthquakes in Taiwan (Chu et al. [30]) and

Kocaeli (Cetin et al. [31] and Youd et al. [32]) earthquake in

Turkey are not practically applicable for the observed lateral

spreads in the sites.

Bardet et al. [11 and 12] proposed six relationships with four

and six parameters, using the data reported by Bartlett and

Youd [33 and 34]. The equation with four parameters is

suitable for conditions with limited borehole data, while the

equation with six parameters is more accurate than the one

with four parameters. The models proposed by Youd et al. [14]

and Bardet et al. [11 and 12] models are the most popular

methods used by engineers worldwide.

Zhang et al. [16] predicted a semi empirical approach to

estimate liquefaction-induced lateral displacements using

standard penetration test (SPT) or cone penetration test (CPT)

data. Their approach combines the available SPT- and CPT-

based methods to evaluate the liquefaction potential with

laboratory test results for clean sands to estimate the potential

maximum cyclic shear strains for saturated sandy soils under

seismic loading. A lateral displacement index (LDI) is then

introduced, which is obtained by integrating the maximum

cyclic shear strains with depth.

2.3.2. Machine learning technique
For complex problems where the relationship between the

variables is unknown, the machine learning technique (for

example artificial neural network (ANN) or Genetic

Programming (GP), etc) is a powerful predictive tool, as long

as it resembles the nature of the situation.

Other researchers have previously shown that the complex

phenomena such as liquefaction have been predicted more

accurately by ANN than by the conventional methods (Goh

[35], Baziar and Nilipour [36]).

While employing Machine learning approach, the following

points should be taken into account:

1. The approach should be generalized such that new

available data, not included in the model, may not contradict

the model. 

2. It should be noticed that not any derived equations, even

with a good degree of accuracy, is acceptable. The resulted

equation must be physically compatible with the phenomenon.

The parametric study of the model can help to find out the

compatibility between the proposed model and the real

phenomenon. 

3. The relation should be based on a comprehensive

statistical analysis and it is not reasonable to judge its accuracy

through R2 or RSME only. In other words, different statistical

parameters should be considered in order to judge the accuracy

of the proposed relation.

4. For machine learning technique, the available data is

usually divided into two parts of training and testing sets.

Firstly, there should be logical reasoning for division of the

data into training and testing sets so that each set represents the

whole range of data. Secondly, the final relation should be

accepted if there is not much difference between testing and

training statistical parameters.

5. The number and the range of data should be such that 

the proposed equation is credibility valid and general 

enough. It means that the number of data provides an

influential effect on the machine learning analysis and the

resulted model.

Wang and Rahman [18] developed a model to predict the

horizontal ground displacements using aback-propagation
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neural network analysis. A database containing the case

histories of lateral spreads observed in eight major earthquakes

(367 cases) was used. The results of their study indicated that

theneural network model served as a reliable and simple

predictive tool for the amount of horizontal ground

displacement. As additional data become available, the 

model itself can be improved to makemore accurate

displacement predictions for a wider range of earthquake and

site conditions.

Baziar and Ghorbani [19] developed a model to predict the

horizontal ground displacement inboth ground slope and free

face conditions due to liquefaction-induced lateral spreading

using aneural network analysis. They investigated the

influence of the seismological, topographical andgeotechnical

parameters on the resulting deformations and their degrees of

importance based on 484cases from 11 sites with the highest

degree of accuracy (R2=92%). Their sensitivity analysis

indicatedthat the two factors of source distance (R) and mean

grain size (D5015) have the most significant effect on the

predicted displacements.

Javadi et al. [20] presented a model based on GP for

determination of liquefaction-induced lateral spreading. The

GP models were trained and validated using a database of SPT-

based case histories.

Separate models were presented to estimate the lateral

displacements for free face and for gently sloping ground

conditions. They compared their GP models with the multi

linear regression (MLR)model and highlighted the advantages

of the proposed GP model over the conventional methods.

Oommen and Baise [21] presented a machine learning

technique known as support vector regression (SVR) using 

free face lateral displacement data. They claimed that 

SVR has relatively better predictive capability than the

commonly used empirical relationship using multi linear

regression.

2.4. Centrifuge study 

Sharp et al. [24] and Kutter et al. [25] numerically analyzed

the centrifuge model experiments data to investigate the

average shear and volumetric strains for the seismically

liquefied soils. The related major effective engineering factors

were thickness of liquefied soil sub-layer and soil relative

density.

Physical model testing such as centrifuge and shaking table

test have shed light on the understanding of complex problems

such as lateral spreading induced by liquefaction. A summary

of the different equations presented by researchers to estimate

lateral spreading is given in Table 2.

3. Development of a new model 

According to the points above and disadvantage of methods,

a new empirical model is needed to estimate lateral spreads

with the following characteristics:

• Compatible with the concept of phenomenon.

• Able to cover the possible range of ground geometry

without any gap.

• Better accuracy

3.1. Data set and statistical parameters

Many researchers have widely accepted that site topography,

soil characteristics and earthquake characteristics are the

required parameters for any lateral spreading analysis.

However, each researcher may use different parameters as

representative of each category of parameter. Youd et al. [14]

have compiled the most complete data bases (484 data) up to

2002. In current study, new 41 data (Table 3) from 

Chi-chi earthquake, Taiwan (1999) and Kocaeli earthquake,

Turkey (1999) are added to the above data set. Therefore a total

of 525 data were used in current study. Summary of the new 41

earthquake events used in current study is presented in Table 4. 

It has been widely accepted, among the researchers, that the

input parameters selected by Youd et al. [14] is a complete and

suitable set of input parameters to control the lateral spreading.

For this reason, the same parameters have been selected as the

effective parameters, by many other researchers as well as in

the current study. These parameters are: the moment

magnitude of the earthquake (M), thenearest distance to the

seismic energy source (R), thecumulative thickness of

saturated granular layers withcorrected blow counts of SPT

less than 15 (T15), theaverage fines content for granular

materials includedwithin T15 (F15), the average mean size for

granularmaterials within T15 (D5015), the ground slope (S) and

the free-face ratio (W). The range of above parameters, for the

total of 525 data, is presented in Table 5.

Despite of broad range of the historical data of lateral spreads

collected and employed for this study, it should be noted that

these data do not cover all the possible situations; thus, special

attention should be paid to the values of input parameters,

while using the proposed equation.

Adding of 41 new data to the Youd’s data, resulted in the data

included from more countries, made the range of topography

(W, S) parameters broader for which the maximum amount of

slope ground increased from 11 to 17 %.

The following statistical parameters were used in order to

assess the quality and accuracy of the proposed equation

compared with previous relations:

The coefficient ofdetermination (R2), while different

equations are available to obtain (R2), the following equation,

because of its broad popularity, was implemented in this study.

root means squared error (RMSE), 

Coefficient of correlation (R) and 

Mean absolute error (MAE). These parameters are defined as:

Where; Mi, Pi and n are measured, predicted and number of

cases, respectively. 
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3.2. Machine learning technique for estimation of lateral
spreading

3.2.1. Artificial neural network models
A neural network is a massively parallel distributed processor

that has a natural propensity for storing experiential

knowledge and making it available for use. It resembles the

brain in two respects:

• Knowledge is acquired by the network through a learning

process.

• Interneuron connection strengths known as synaptic

weights are used to store the knowledge.

The procedure used to perform the learning process is called

learning algorithm, a function to modify the synaptic weights

of the network in an orderly fashion so as to attain a desired

design objective.

In this study, the artificial neural network is employed to

check the importance of each input parameter. 

In this research, 20 percent of the data were randomly selected for

testing and the remaining 80 percent were selected for training.
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;34$.0<1 �=�;.>��,,, ��� ���� �� ���� �� ��� ���
4?<14?<���$<@$��,,,

���

�� ����� ��� ���� ���� ���� ����

����

4?<14?<���$<@$��,,, �� ��,� ��� ���� ���� ���� ����
4?<14?<���$<@$��,,, � ����� ��� ���� ���� ��� ����
4?<14?<���$<@$��,,, � ����� ��� ���� ���� ��� ����
4?<14?<���$<@$��,,, � ����� ��� ���� ���� ��� ����
4?<14?<���$<@$��,,, � ,��� ��� ���� ���� ��� ����
4?<14?<���$<@$��,,, � ����� ��� ���� ���� ��� ��,�
4?<14?<���$<@$��,,, � �,��� ��� ���� ���� ��� ��,�
4?<14?<���$<@$��,,, � ����� ��� ���� ���� ��� ����
4?<14?<���$<@$��,,, � ���� ��� ���� ���� ��� ����
4?<14?<���$<@$��,,, � ����� ��� ���� �� ���� �����
4?<14?<���$<@$��,,, � ����� ��� ���� �� ���� ���
4?<14?<���$<@$��,,, � ����� ��� ���� �� ���� ����
4?<14?<���$<@$��,,, � ����� ��� ���� �� ���� �����
4?<14?<���$<@$��,,, � ����� ����� ���� ���� ���� ����
4?<14?<���$<@$��,,, � ���,� ����� ���� ���� ���� �����
4?<14?<���$<@$��,,, � ���� ����� ���� ��$ ��$ ���
4?<14?<���$<@$��,,, � ����� ��� ���� �� ���� ���,
4?<14?<���$<@$��,,, � ����� ��� ���� �� ���� ���,
4?<14?<���$<@$��,,, � ,��� ��� ���� �� ���� ����
4?<14?<���$<@$��,,, � ��,� ��� ���� �� ���� ����
4?<14?<���$<@$��,,, � ���� ��� ���� �� ���� ���
4?<14?<���$<@$��,,, � ���� ��� ���� �� ���� ����
4?<14?<���$<@$��,,, � ���� ��� ���� ��$ ��$ ���
4?<14?<���$<@$��,,, � �,�,� ����� ���� ���� ���� ����
4?<14?<���$<@$��,,, � ����� ����� ���� ���� ���� ����
4?<14?<���$<@$��,,, � ����� ����� ���� ���� ���� ���
4?<14?<���$<@$��,,, � ����� ����� ���� ���� ���� ����
4?<14?<���$<@$��,,, � ����� ����� ���� ���� ���� ����
4?<14?<���$<@$��,,, � ���� ����� ���� ���� ���� ����
4?<14?<���$<@$��,,, � ���� ����� ���� ��$ ��$ ���

Table 3 The 41 new data used in the current study



After data division, it is important to pre-process the data into

a suitable form before they are applied to the ANN. Pre-

processing the data, such as scaling, is important to ensure that

all variables receive equal attention during training. The output

variables have to be scaled to be commensurate with the limits

of the transfer functions used in the output layer. Scaling the

input variables is not necessary but is always recommended. In

this study, the input and output variables are scaled between

0.0 and 1.0 because a sigmoidal transfer function is used in the

output layer. At the beginning of the training process, random

values were used as weights. Because the initial values play an

important role in this procedure, the training process has been

conducted several times, each time with different random

synapses values to reach results with the least errors. The Root

Mean Square Error (RMSE) is the criterion to determine the

errorof the resulting function.

Table 6 shows the weights of the input-hidden layer

connections for the combination of free face and gentle slope

model. Taking into account the connection weights, by

partitioning the hidden-output connection weights into

components connected with each input variable, one can

assess the relative importance of various input factors and also

regenerate the ANN model.

The relative importance of the each parameter obtained for

the optimal ANN model (with one hidden layer and 12
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Table 4 The earthquake data used in the proposed model
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� ������� ������ ����� ������� ������ ������ �������
�� ������ ������ ������ ������� ������� ������� ������
�� ������� ������ ������ ������� ������ ������ �����
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Table 6 Connection weights of the ANN model



neurons) is summarized in Table 7. The D5015 and R

parameters are more important than the other parameters.

However, when the input parameters are categorized as

earthquake, topography, and soil parameters, all of the studied

parameters have noticeable importance, indicating that all of

the parameters have effects on the lateral spreading. The

obtained relative importance in this study is compatible with

the same results, reported by Baziar and Ghorbani[19].

The performance of the neural network obtained in this study

is compared with the other methods in Table 8. The results

indicate that the ANN model presented in this study performed

very well, with R2 and RMSE of 0.92 and 0.67 m for training

and 84.3 and 0.85 m for testing, respectively. Table 8 also

shows that the results of testing are generally consistent with

those obtained during training, indicating that the model is

able to generalize within the range of data used for training.

3.2.2. Genetic algorithm and genetic programming
As an optimization technique, genetic algorithm (GA), which

was evolved from the principles of genetics and natural

selection, tries to search the minima of a given function using

a trial process. Genetic algorithm optimizes an array of input

variables or chromosome sin different types such as binary

strings (0, 1), real strings (0, 1... 9), and representation of tree

(computer programs). Koza developed a special genetic

algorithm known as ‘‘genetic programming (GP)’’in which

each chromosome in the population is a program comprised of

random mathematical functions and terminals. A function set

could contain functions such as basic mathematical operators

(+, -, n, /, etc.), Boolean logic functions (AND, OR, NOT,

etc.), or any other user defined function (Cabalar and Cevik

[37],Jafarian et al. [38], Askari et al. [39] and Khan [40]).

Based on the result of ANN, presented in this study, it is well

understood that the lateral spreading is affected by all input

parameters (M, R, T15, F15, D5015, S and W)chosen originally

by Bartlett and Youd [34].Therefore, the same seven input

parameters were employed in the current study.

In order to develop the GP model, 20 percent of cases (105

cases), included the new 41 cases, were selected for testing

and the remaining 80 percent (420 cases) were selected for

training. The data division process was performed so that the

main statistical parameters of the training and testing subsets

became close to each other. To reach this goal, a trial selection

procedure was carried out and most possible consistent

division was determined. It is essential that the data used for

training and testing represent the same population. In order to

achieve such desired population in the present study, several

random combinations of the training and testing sets were tried

until two statistically consistent data sets were obtained. The

mean, standard deviation and range of each input parameters

used in the current study are presented in Table 9.

3.3. Result and discussion

Many data sets were executed with various initial setting, 

and the performances of the obtained equations were

benchmarked. Selection of the best model was based on

statistical criteria including: R2, Root Mean Square Error

(RMSE) and Mean Absolute Error (MAE). Moreover, a

comprehensive parametric study was performed to monitor the

behavior of model versus variations of input variables and also

its compatibility with the physical concept of the phenomenon.

The following relationship was finally selected as the best

model for prediction of lateral spreading:

− 0.02452T15F15− 0.00625F15S +0.001474R(W − T15) − 0.06875T15(W − S)

+ M(0.1058T15 + 0.009652T15 W-0.1225) + 0.00024T15F15
2-0.00255RWS +

2.6 (Eq.1)

,- � ./012 3456578902.1� � ..01/ 34565789022:; < �;20;'345=890;��� � �;;0:'345=890;/1/ < 909//2	=$>
? � �0@�:>890:;.2
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Table 8 The statistical parameters for various models



Where, displacement value is assumed zero if Dh<0. 

To perform a parametric study, other parameters were kept

constant at their average values in the data set (reported in

Table 5) while changing the parameter under consideration

and evaluating the predicted displacement.

Fig. 1 (a-g) shows the predicted values of Dh as a function of

each input parameter when the other parameters are set to their

average. The results, in general, agree with the finding of

previous researchers (Wang and Rahman [18], Youd et al. [14],

Baziar and Ghorbani [19], etc.). 

As it is shown in Fig. 1, increasing the values of M, T15, F15,

D5015, S and W parameters led to increase in the displacement

values. The increasing F15 caused Dh to decrease, but the

displacement value became zero for F15>23. As indicated in

Fig.1, no lateral spreading happens while other parameters are

kept constant at their average values. In other words, the value

of limiting F15=23 would be changed with selecting different

values for other parameters.

The predicted displacements for changes in D5015, when

other parameters are set to their average values, are plotted in

Fig. 1-g.  The authors believe that, to evaluate the effect of

D5015 on the displacement, the combination of three soil

parameters (D5015, T15 and F15) in connection with other

assumed parameters (W, T15, M) must be investigated.

The equation presented in this study has the following

advantages over Youd et al. [14] and Javadi et al. [20] equations:

i. The equation of Youd et al. [14] and Javadi et al. [20] are

discontinued for free face ratio (1<W<5%).

ii. When both free face and ground slope are simultaneously

present in the field, each pair of equations proposed by Youd et

al. [14] and Javadi et al. [20] give two different values for Dh

iii. Under the Javadi et al. [20] equation, when the free face

ratio (W) increases the value of lateral displacement increases

and then decreases as shown in Fig.2. In other words, when the

free face ratio increases beyond 30%, the displacement

decreases with increasing free face ratio which is not

compatible with the concept of the phenomenon and also

findings of other researchers. 

iv. If free face ratio (W) is remained constant at 6 degree and

ground slope parameter (S) is increased from 1 to 17%, Javadi

et al. [20] equation predicts that the lateral displacement will

remain constant. This trend is not compatible with the physics

of the phenomena.  

v. The equation of Youd et al.[14]was not successful to

estimate the lateral spreading for the new 41 cases (Fig.3.b). 

vi. Precision of the developed equation is examined by

plotting the measured versus predicted values of displacement

for all the data as shown in Fig. 3.a. The same prediction for

Youd’s model is presented in Fig. 3.b. A comparison of these

two Figures indicates that GP model performs very well, with

R2, RMSE and MAE of 0.89, 0.9 and 0.6 for training and 0.85,

0.7 and 0.5 for testing stages. 

vii. According to the statistical parameters reported in 10,

current equation is more accurate than any equation previously

reported. 

4. Summary and conclusions

In this paper, neural network and genetic programming

were used to predict the lateral spreading due to seismically

induced liquefaction. A database including 525 case

histories, for the first time, from 13 sites located in Japan,

USA, Turkey and Taiwan was used to develop a new model.
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Fig. 1 Variation of the predicted horizontal displacement against different parameters when other parameters are set to their average,
according to the proposed GP model
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A sensitivity analysis was also carried out to study the

relative importance of the factors, affecting lateral spreading.

This sensitivity analysis indicated that the two factors of soil

and earthquake have the most significant effect on the

predicted displacements while the topography parameters

have less impact on displacements. As a result of ANN

analysis, seven parameters of M, R, T15, F15, D5015, S and W

for predicting lateral spreading were used as input

parameters to develop the GP-based model. The proposed

model, as indicated in Fig. 3, showed a reasonably good

performance for all the data sets with (R2 =88.6, RMSE=0.8

and MAE=0.6).

A parametric study was also performed to investigate the

behavior of model for different conditions. The observed

trends of the proposed model are in good agreement with the

results reported by other researchers.This accuracy shows the

superiority of the GP model over other traditional equations

and suggests that the proposed equation can be applied for

engineering practice.
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