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Abstract

This paper presents time domain fundamental solutions for the extended Biot's dynamic formulations of two-dimensional
(2D) unsaturated poroelasticity. Unsaturated porous media is considered as a porous media in which the voids are saturated
with two immiscible fluids, i.e. liquid and gas. At first, the corresponding explicit Laplace transform domain fundamental
solution is obtained in terms of skeleton displacements, as well as liquid and gas pressures. Subsequently, the closed-form time
domain fundamental solutions are derived by analytical inversion of the Laplace transform domain solutions. Finally, a set of
numerical results are presented which verifies the accuracy of the analytically inversed transient fundamental solution and
demonstrates some salient features of the elastic waves in unsaturated media.

Keywords: Unsaturated poroelastodynamics, Wave propagation, Fundamental solution, Boundary element method, Two-

dimensional problem.

1. Introduction

The theory of elasticity for single-fluid saturated
porous media was presented in a series of publications by
Biot [1,2,3,4] standing on the concepts and principles of
continuum mechanics. This theory which ignores the
microscopic level and assumes that measurable
macroscopic values of classic continuum mechanics are
still relevant, was generalized in the context of
thermodynamics of open continua to include inelastic
behavior and also chemically active unsaturated porous
media [5,6,7]. In this extension which is the bases of the
governing equations that are used in this paper,
unsaturated porous medium is considered as the
superposition of several interacting continua in time and
space that overlap in a representative elementary volume.

Following to his works, Biot presented the theory of
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elastic wave propagation in isotropic porous solid
saturated by a viscous fluid [8,9]. This theory explains the
existence of three body waves propagating in the single
fluid saturated porous media. These waves are two
compressional waves (P1 & P2-wave), and a shear wave
(S-wave). After three decades, Berryman et al. [10]
attempted to extend the theory that admits water and air
into the voids under the assumption that the wavelength of
the excitation is long enough that the capillary pressure
changes are negligible. They confirmed the existence of
three body waves in the double fluid-saturated porous
solid. Later, Wei and Muraleetharan [11] utilized the
theory of mixtures with interfaces and expressed acoustic
waves in unsaturated porous medium. They showed, there
exist three compressional waves instead of two, which the
third one will vanish at limiting case of single fluid
saturated medium. In a recent study, unsaturated
poromechanics was used to derive the wave equations and
obtain a full extension of Biot's theory of elastic waves in
unsaturated porous solids with and without dissipation at
low frequency range [12]. This extension, confirms the
existence of three compressional waves and one shear
wave propagating in the unsaturated porous solid so that
the second and third waves are highly attenuating and vice
versa the attenuation of the first compressional wave and
the shear wave are negligible.

Fortunately, with the advent of high-speed digital
computers, more complex engineering analyses can be
performed via computational methods like FEM, BEM,
FDM. With the recent growing interest in the boundary
element method and its application to the various branches
of applied mechanics and appearance of comprehensive
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domain type numerical methods for unsaturated
poromechanics, there is a need for determination of
transient fundamental solution for dynamic unsaturated
poroelasticity for boundary type methods.

History of fundamental solutions for saturated
poroelasticity starts with fundamental solutions for the
corresponding quasistatic problem were derived by Cleary
[13] following from the earlier work of Nowascki [14] in
thermoelasticity, while closed-form Laplace domain
quasistatic poroelastic fundamental solutions were
obtained by Cheng and Liggett [15,16]. However, it seems
that the first attempt to obtain fundamental solutions for
dynamic poroelasticity was made by Burridge and Vargas
[17], who used the saddle point method to obtain
displacements at large distances due to a point force in the
solid. Later, Norris [18] derived time harmonic Green
functions for a point force in the solid and a point force in
the fluid. He also obtained explicit asymptotic
approximations for far-field displacements, as well as
those for high and low frequency responses. Progressively,
Kaynia and Banerjee [19] used a solution scheme similar
to that of Norris [18] and derived the fundamental solution
in the Laplace transform domain as well as transient short-
time solution.

Biot had formulated the dynamic poroelasticity in
terms of two displacement fields, namely those of the solid
skeleton and those of the liquid. For the numerical solution
of practical boundary value problems, however, it is more
convenient to use the displacement components of the
solid and the pressure in the fluid. For this reason, Biot's
equations are sometimes cast in terms of these quantities.
This reformulation can, however, be achieved only in a
transformed domain precisely, and with assumptions in
time domain. The advantage of the so called u-p
formulation is that the resulting coupled equations
resemble those of dynamic thermoelasticity for which the
Green functions were available [14]. This formulation has
been used by Bonnet [20] and Boutin et al. [21] to derive
steady-state Green's function of poroelasticity by
Kupradze [22] Method. Kaynia [23] adopted a similar
approach to derive explicit expressions in Laplace
transform domain for Green's functions of dynamic
poroelasticity for suddenly applied point force in the solid
and a sudden injection of fluid into pores. The errors in
Bonnet's paper have been shown by Dominguez [24,25]
who set and applied the formulation for the time harmonic
saturated poroelastic problems. To fulfill the absence of
the fundamental solutions to be applied to the Biot's full
dynamic equations, Chen [26,27] presented explicit
Laplace transform and approximate transient two and
three-dimensional fundamental solution of Biot's full
dynamic poroelasticity. Further works have been done on
transient fundamental solutions of saturated dynamic
poroelasticity based on Zienkiewicz and Shiomi's [28] u-p
reformulation of the Biot's equations in time domain for
medium speed phenomena [29], and also on incorporating
incompressibility of solid matrix and liquid compared to
compressibility of the skeleton [30,31,32]. Further details
on the fundamental solutions of  saturated
poroelastodynamics can be found in [33].

By appearance of new static and dynamic problems of
unsaturated porous media in science and engineering fields
like geophysics, geomechanics, geotechnical and
environmental engineering, a growing need to develop
numerical methods for these problems was found. Two
and three dimensional time domain fundamental solutions
for quasi-static unsaturated soils were presented by
Gatmiri and Jabbari [34,35]. They used the state variables
of mean net stress and soil suction in order to represent
generalized elastic constitutive relation for soil skeleton.
The fundamental solutions were presented in terms of soil
skeleton displacement as well as water and air pressures.
In a recent publication, Maghoul et al. [36] presented the
three-dimensional time domain coupled thermo-hydro-
mechanical fundamental solution for the same quasi-static
loading condition of unsaturated soils.

So far as the authors know, attempts to find full
dynamic fundamental solution of unsaturated porous
media were started by Ashayeri et al. [37,38]. They
derived the governing boundary integral equation as well
as the 2D explicit Laplace transform fundamental solution
of full dynamic unsaturated poroelasticity in terms of
skeleton displacement and liquid and gas pressures. More
recently, analytical 3D transient elastodynamic
fundamental solution for unsaturated soils was presented
by Ashayeri et al. [39]. The main aim of this paper is to
extend the previous works to the time domain and to
present the closed-form 2D transient fundamental solution
for the full dynamic unsaturated poroelasticity.

2. Governing Equations

The governing differential equations are derived by
considering the whole media as superposition of three
continuous media in time and space. These continuous
media are skeleton, liquid, and gas. The skeleton is
composed of solid matrix and empty connected pores.
Liquid and gas are filling the pores with the remaining
space without the solid matrix. The basic equations of
mass balance of constituents, momentum balance of whole
mixture and constituents and liquid and gas mass
conduction laws are comprehensively presented by Coussy
[5,6]. In the following the final equations are summarized
for an infinitesimal isothermal  transformation.
Furthermore, as will be explained later the solid matrix of
the skeleton is assumed incompressible compared to the
skeleton. It is worth noting that the summation convention
is used in the formulations.

Liquid and Gas mass balance

(1+8)g D" pl 1 (14 £)§ + ¢, + 44 = ¢))

1

(1+&)geDE p¢ —(1+ &) +(1- $N +qf=y5 ()

a

where ¢, is the fluid phase "a" volume fraction;

E=uy, is the skeleton volume dilatation or volumetric

.«
strain; pg_j, o

bulk modulus of the liquid or gas; u; is the displacement

a

aiq. 18 the

is the liquid or gas pressure; D,
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vector of the skeleton particle; g;*
a=lq,g

is the liquid or

gas flux vector and 73:1%, is the rate of liquid or gas

injection to the medium.
Momentum balance for whole mixture

oy, + J; = pii; — PN — pEgiif =0 3)

where p=p"(1-¢)+(p*¢*) 41y, is the apparent
mass density of the whole medium, pg_,, . is the

intrinsic mass density of the solid matrix, liquid or gas,
#=¢"" +¢% is the total porosity, f; is the body force

1

density per volume unit, u is the relative

i a=lq,g
displacement vector of the liquid or gas particle with

respect to the skeleton particle, and o, is the total stress

tensor.
Fluid mass conduction laws (generalized Darcy law)

g = 4% =k (=p] - p%ii; - p%iif)  a=lg.g (4

a
a=lg.g

of the liquid or gas phase.

In addition to eqns. (1) to (4), constitutive relations
should be provided for each constituent. The detail of
extracting constitutive relations from the first and second
thermodynamics laws for unsaturated poroelasticity was
presented in [5,6] and the summary of the equations are
represented here for an isotropic material:

where £, is the isotropic permeability coefficient

0y = Aedy; +2ue; —b” p“oy; a=lq,g (5)

p* =ML —¢P)e—¢” (u; +uf) ] a.f=lg.g (6)

where A,u are drained Lame coefficients, b? is the

isotropic Biot’s coefficient of fluid phase "4 ", and M %
links the increment of fluid pressure of phase "o " to
increment of fluid mass content of phase "f " while the
test is undrained with respect to the fluid phase other than
llﬂ ll.
The thermodynamic stability condition of the system
implies the following restrictions (M lag = prelay.

Zb“ L VELDVES _ Ml S .
D" ™)

a=lq,g

where D and D" are bulk modules of skeleton and
solid matrix, respectively.

Usually, it is difficult to perform experimental tests to
determine coefficients of eqn (6) for liquid and gas.
Meanwhile, assuming solid matrix is incompressible with
respect to the porous skeleton (i.e. D*/D"~0) will simplify
eqn (6) into one constitutive relation in terms of the

capillary pressure and liquid degree of saturation
increments. The fundamental solution can be found
without this assumption, but due to the difficulty of
determination of material properties, the solutions will be
very difficult to use or even useless, while with this
assumption, tolerable limitation on the generality of the
solutions is imposed. Further detail on the extraction of
this constitutive relation can be found in [5];

lg _ Ilq Iq lglq
lq:bisrdgjL(S”l N
(+e)g DY (1+¢&)

Ydp, ®)

where capillary pressure or suction is defined as
p. =p®—p', liquid degree of saturation S =¢'1 /¢
and the square matrix of [N b x> 1s the inverse of square
matrix [M“],,,.

Equation (7) assures the existence of inverse of
[M“"1,, and the four components of [N*],,, are:

N = N = (11 £)¢ D" — N =1+ £)¢2D% —N%  (9)

Therefore, the final constitutive relations for an
isotropic unsaturated linear elastic medium using eqns (5),
(8) and definition of liquid degree of saturation are as
followings:

Isotropic linear elastic skeleton

oy + pES; = Aed; + ey + b .5, (10)
Capillary pressure relation

N+ (" — ¢y, = (1+£)§" (11)

One can omit the term (1+ 5)(151" between eqns (1), (2),
and (11):

N8 p& + ' pla 4 plyy, 4 gluh = ' (12)
. lgo -1 la~ - .
N p& + N + (1=b"y; ; +g2uf; = y* (13)

Taking the Laplace transform of eqns (3), (4) for both
fluids, (12), and (13) with zero initial conditions and
performing appropriate substitution, one obtains a new
form of the equations in Laplace transform space in terms
of spatial derivatives of skeleton displacement u;, liquid
and gas pressures p¥,pS that is the precise wu-p
formulation in transformed domain.

(A )il i + ity — Pl b5 ~bEpE + f;,=0  (14)
TUBY - NS NS BT 47 =0 (15)

1

74 pS — NS5l — N¥858 —B¥sii,, +7% =0 (16)

where s is the Laplace transform parameter and the
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tilde denotes the Laplace transformation, and
—a:(l/ka+mas)—l a:pa/¢a a:ba_paﬁasj

p=p-p n/qs pé 77gs withi, j=1,2.

Prior to find Laplace transform domain fundamental
solutions, it is helpful to present the non-dimensional
quantities and governing equations. Thus we define
dimensionless coordinates and time by means of:

and T =

X;
— i
Xl._

X, (17)

X~

where K has the physical dimension of permeability
and is related to geometrical average of the permeability of
the medium with respect to liquid and gas, its value will be
discussed more in the numerical demonstration section.
And V), has the dimension of velocity given as:

Vo= |2 B 220 oM PP (18)
Yo a.f=lq.g

Next, we define a dimensionless skeleton displacement
and pore fluids' pressures through:

a
U =—-—, and P%= a=Iq,g (19)
PRV pVi
i:%,ﬁ % NP =NPxH a=lgg (20-1)
,3:1,;3“=pp,ma:”;,1€“=% a=lg.g (20-2)

Therefore, the non-dimensional forms of eqns (14) to
(16) are:
—psU;~b"PY —pePE+F =0 (21)

+/1UL i

7 "’7’,5? - qu"’squ - Nhegpe _plis, 4T =0 (22)

HEPE — N'€spl — N%8spe —pEsU, +T€ =0 (23)

where the parameters are defined as in eqns (14) to
(16) but with dimensionless quantities.

Hence, the non-dimensional governing equations and
their corresponding fundamental solution take the same
form as natural ones.

3. Laplace Transform Domain Fundamental
Solution

Fundamental solutions are the response of the medium
to point excitation which is a Dirac delta function in space,
J(x) and either a Dirac delta function, J(z) or a Heaviside
step function in time, H(?). However, for its future
application in BEM it is better to consider the solution
which results from a Heaviside step function in time. Thus,
for a continuous unit line force in the i-th direction

suddenly applied at the origin, i.e. fi(x,#)=d(x)"H(?), and a
unit rate of liquid line injection at the origin, i.e.
Y(x,t)=5(x)-H(t), and a unit rate of gas line injection at the
origin, i.e. y(x,t)=d(x)'H(t), the Laplace transform of
which is s’ d(x). The two-dimensional Laplace domain
fundamental solutions are found by following the
Kupradze's Method [22].

It is convenient to write the basic eqns (14) to (16) or
the non-dimensional ones eqns (21) to (23) for the two-
dimensional case in their matrix form as:

BU+F=0 U’ =[u, p" pcl,

- ~ 24
Fl=[f, 7 7% @Y

where B,,, (Ox, s)|4X 4 1s the differential operator matrix
that is defined as follows for i, j =1,2:

o’ 2 =2
B, =(A+ p)——+ 38, (uV? - ps?),
= (A+ 1) oxox, i (UV" = ps©)

! (25-1)
7 lq 0 0
By=-b""—, B,=-b%—
Ox; ox;
I
By;=Bjs, Byj=Bjs, By=By=-N s (25-2)
3 =71V = N"s), By, =74V’ - N%s) (25-3)

where V2 is the Laplacian operator.
Therefore, the problem is to find solution matrix
(G ]axa » which satisfies:

BG+Is"'8(x) =0 (26)

where 7 is the unit matrix. Following the Kupradze
method [22], the fundamental solution is:

G=BTp 27

where B is cofactor matrix of B .
Equation (27) enables us to determine the sixteen

components of G

'unlaxa DY applying the transpose of
cofactor matrix to the single scalar function ¢ .

Computing the determinant of differential operator matrix
yields

det(B) = u(A +2u)7 "7 ¢ (V> = £57)

(28)
(VO +C, Vv +C,V2 +Cy)
Cy==5(fa0 + fu15) (29-1)
Cy ==5(fag + fars + f257) (29-2)
Co=—5"(foo + for5 + fors?) (29-3)

where the coefficients of eqn (29) are presented in
Appendix.
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Equation (28) is a polynomial of order four of V2,
which one of its roots is the 7%? =ps?/u  that 7,

corresponds to the wave number of the shear wave. The
remaining part of eqn (28) is a cubic polynomial in terms

of V?*, which can have three roots as # ,#3,7 in which
A, 7,7 resemble the wave numbers of compressional
waves. After some algebra one can find

1
Q= -
s+ 27 T s = A A7)
{¢’3—¢’2 P3P Ps =P P =P )

H-B) B-A) H-A) H-H)

(30

where ¢, =iK0(7°cjr),j=1,2,3,s with #=xx; as
square of distance of receiver from origin (0,0), and
Ko (#;r) is the modified Bessel function of second kind of

zero order.
Refer to eqn (27) the components of fundamental
solution matrix are;

~ 1 (A —T1,) A - A*) = BYA Ky (A7)
I L L A A=A A=A 31-1)
2ms1 k=1,2.3 (Rt =) R —A)
~ 1 [(A2 —TI,)(A2 — A®)— BEA2 1Ky (A, )
Gy =—— e e A=A A=A (31-2)
2 53 Fer1 = A Fwr —A)
S~ 1 [(A+2u)N"E +b'p & |sA2 — N8 pg?
Gy =Gy = Frv -~ pr Kohr)y, A =A.4 =4 (31-3)
a(A+2mnnts (535 (At =) Fsa =A%)
he _ ;& Nlala _ plg arlag AX
y - b ( 1 Hi_(h N ! bN )S]LC’KI(%,{;’)}, A=A A=A (31-4)
24+ 207 4535 G — ) — ) be r
7la _ hlanree _ 1 g arlag A X
ey L OV NIRRT p Gy A=A A (31-5)
2r(A+2mn" 535 G — A G —A) bHn®
~ 1~ ~ 1 ~
G[4=§G4j’Gi3=;G3j (31'6)
=~ _ 1 CiKo(#r) B (;CSA;'/'KI(;CS")+;C§Bin0(7%sr))]+ z [(AZ —fczﬂ)(Az —7’:%+2)+A2(E]q +B?) (%kAinl(;fk”)"';ﬁiBino(;fk”))
G H ps’ fa Fa =) FEier — A1) ps’ ’ (31-7)

A=A A=A

where K,(#7) is the modified Bessel function of
second kind of first order and;

inx. O X;X;
j=———, By =—-,C; =6 i,j=12 (32-1)
r r r
lqlq gg =2
m, :N S,H :N S,Azz X ,Bl"
T gl & g A+2
n n H
— _ (32-2)
_ b's Bt o b® s
(A+2p)7" (A+2u7¢

In the above Laplace transform domain solutions, i.e.
eqns (31), (N},.j is the displacement of solid skeleton in i-th

direction at a point &(x;x;) due to the unit Heaviside line
force in j-th direction at origin. Whereas 53]. is the liquid

pressure at a point &(x;x;) due to the unit Heaviside line
force in j-th direction at origin. Similarly, G, ; s the gas
pressure at a point &(x;x;) due to the unit Heaviside line
force in j-th direction at origin. Also G,,G,, respectively,
are the displacements of the solid skeleton in i-th direction
at a point &(x;x;) due to the unit Heaviside rate of liquid
and gas line injection at origin. G,;,G,, are liquid and gas

pressure at a point &(x;x;) due to the unit Heaviside rate of
liquid and gas line injection at origin, respectively. And

Gy, Or G, are the liquid or gas pressure at a point &(x;x;)

due to the unit Heaviside rate of gas or liquid line injection
at origin.

4. Transient Fundamental Solution

With the Laplace transform domain fundamental
solution being derived, we now proceed to derive its
counterpart in the time domain by using analytical
inversion. Due to the complexity of the fundamental
solution itself and complexity of wave numbers or roots of
eqn (28) for unsaturated medium, the analytically inversed
time domain solution seems to be extremely difficult.
Afterward, we try to reduce the complexity of the
analytical inversion problem by means of using
appropriate approximation applied on the complex form of
wave numbers. These approximations are validated for
solutions corresponding to convenient values of Laplace
parameter s, and more interestingly became more accurate
with s decreasing that means low frequency range or
longer time solutions.

4.1. Discussion on the wave numbers' form

In section 3, it was shown in eqn (28) that the
determinant of differential operator matrix is a polynomial
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of order four in terms of Laplacian operator. Fortunately,
the polynomial can be reduced to cubic form easily by
separating the wave number corresponding to shear wave,
and reduce the problem of finding compressional wave
numbers to finding zeros of a cubic polynomial as:

Ve+CVH+CVE+Cy =0 (33)

where the coefficients are introduced in eqns (29-1) to
(29-3). Following to the algebraic relation between roots
of a cubic polynomial and its coefficients we have:

A +H +A =—-Cy (33-1)
A + A +AHA =C, (33-2)
A =-C (33-3)

Now similar to saturated media [27], we assume the
wave numbers have the form of:

A=l (420 =l I+ ¢ =671 k=123 (34)

where ¢, and (; are related to the velocity and
attenuation of the k-th compressional wave, respectively.
Comparing eqn (33-3) with eqn (29-3) reveals that it is
convenient to assume the attenuation of the first
compressional wave is negligible compared with the
second and third waves i.e. {; = 0. Thus, the wave number
of the first compressional wave takes the form of

A =sVp! (35)

where Vp is the phase wave velocity of fast
compressional wave. This is in accordance with the results
of calculation of phase wave velocity and attenuation of
compressional and shear waves obtained from extended
theory of Biot's elastic wave propagation into unsaturated
media performed by the authors in a separate research.
Ashayeri et al. [12] showed the velocity of the fast
compressional wave obtained in absence of dissipation
reads:

A+2u+b*MPpP
sz\/ # a,f=lg,g (36)

P

Introduction of dissipation to the theory at low
frequency range shows the velocity of the fast
compressional wave changes insignificantly and its
attenuation is negligible compared to other compressional
waves [13]. It is worth noting that the eqn (36) takes the
form of fast compressional wave velocity known in
elastodynamics and saturated poroelastodynamics limiting
cases with appropriate values of 5 and M .

Back to the eqns (33-1) and (33-2) with keeping in
mind (¢; = 0) and solving two wave numbers in terms of
the third one and using eqns (29-1) to (29-3) gives the
following approximation for the velocity and attenuation

of the waves i.e. ¢, , {; from the current equations:

Joa€k + faci + fnci =1=0 k=123 (37-1)
_ Ja +f21013 +f0161f _
k= 2 .2 - 4 k= 2,3
2¢;” + 2 fooci + 4 S0k
(4fn +12f0e)EE =22 +4fuci)S
+(fao + fooci) =0 k=23

(37-2)
(37-3)

Shear wave number is rewritten in terms of Laplace
transform parameter s:

7 :i(s,_‘_ é’sls + éVsZS )

Toe sHBLa s+B G
= %(1—%(M+¢)r1 (38-1)
L e
L= 2";; (1-22 1‘;‘”"' L pla s (8Y)

where ¢, , {; and {, are related to the shear wave
velocity and attenuation, respectively. Theoretical
expressions show the shear wave number of unsaturated
media in absence of dissipation reads

A =pm= D (39)
U

Introduction of dissipation in to the theory reveals that
the variation of shear wave phase velocity at different
frequencies is insignificant and its attenuation is as the
same order as the fast compressional wave [13].

4.2. Analytically inversed transient solution

Now we begin to find the analytical inverse of the
Laplace transform fundamental solutions using available
Laplace transform tables [40]. The most important Laplace
transform formulas are listed below:

1
LK (as)y =——=H(t - a)»
Ve —a? (40-1)
L*l{le“Kl (as)} = i,/;(r +2a) a>0
S a

LYK, (aVs® =b* )} !
’ Vi —a? (40-2)

cosh(Wt* —a®)H(t—a) a>0

LM e K (@™ — b)) =
Vst -b? (40-3)

ibsinh(b\/t2 —a*)H(t-d) a>0
a.

Furthermore, we define the following intermediate
function to seek simplicity of expressions:
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L, (x)=yx2 =r2c? ¢ =Vpye, =V k=1,2,3,4 (41)

The coefficients introduced in the following part can be
found in Appendix.

Function Gyy:

Substituting eqn (34) into eqn (31-1) and some algebra
one can rewrite eqn (31-1) as:

3 2

~ a 1S~ +a ST+ a . S+a

G = - 13 - 1k2b blkl buo KoGhr) +
i DikoS (Bugr s + b1 )(Biss + iy )

(42)

2
ApS~ T a8t 4ay
(by115 +by12)(By138 +byyy)

Ky(Hr)

o (1-7) +ep, e G2 (’*7))
Ii(z)

t
e (e €
G,y = (S0 +J' 11
R0

Vp

T e LT (0) )

t
T + J(elko + elkleium([ir
k=23 k() r

€k

Function Gs3.
Substituting eqn (34) into eqn (31-2) and some algebra
one can rewrite eqn (31-2) as:

3 2
Aok3S”~ oS~ +Anp S+ dopo

533 =
555 2w (bt + Do Jboss +bayy)

KoGr)+
(45)

2
Ar128”~ T ay15 +dyy
(Dy115 + Dy )(By135 + byy4)

Ko (A1)

One can use partial fraction decomposition and

—Cap2 (f*‘f))

t — —
“ :{6210 n J' (e 4 eype
oM 0

Vp

t
_s.; coshi (¢ e (=
Z {eargoe Y cosh( €Ly (1) + j(€2ko +eye M v ey,
r

k=2,3 T (@)

Sk

Function Gsy:
Substituting eqn (34) into eqn (31-3) and some algebra
one can rewrite eqn (31-3) as:

3 2
= A3k3S” + A3ppS” + dzp S+ dspg
Gy = Ko

r)+
(55 DakoS(bagys + b3y )by + biyg)

) (48)
d31p8~ +dz; S +as
(D315 + b3y )(b3138 + b3yy)

Ky(r)

One can use partial fraction decomposition and

p
dr}H(z—Zw

+ €1k

.
dr}H(r—ZH

One can use partial fraction decomposition and
determine e;, to rewrite eqn (42) as:

o €1ko €1kl C1k2
Gy = § leyeoo +—— +———+——— K (Fr) +
S+ep Stopm

k=23 (43)

e e
le 0 +—H—+—21K (A7)
s+ Stan

Thus the G, is calculated using convolution integral as:

(44)
efcl“(lfr) )efé’kr COSh( gk 1—‘k (T)) dT}H(l _ L)
Ly (z) Ck
determine e;, to rewrite eqn (45) as:
~ (4 e e
Gy = Z [earoo + M + #*’#]Ko(%ﬂ) +
k=23 N s+ (’Zkl s+ 62/(2 (46)

e e
legip + —2—+—22 1K (A7)
S+Cyyy S+Cop

Thus the G3; is calculated using convolution integral as:

(47)

e—CZkz(t—T))e—gkr cosh( &I, (7)) dryH (t - L)

Ly (7) Cp

determine e;, to rewrite eqn (48) as:

~ e e €y
Gy = Z [eskoo + =20+ —H—+ =R K, (. r) +
s Steyy Sty

k=23 (49)

e e
leyjo + —2—+ —2 1K (A7)
P

Thus the G, is calculated using convolution integral as:
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- _ €310 j (63116 capy (1= ) e—Cslz (t‘f))

deVH (t- 1)+
0 rl(r) Ve
.
' ) (50)
Z {eso0e M MJr I(e3k0 +ege ) pon e mon Ty ol Md VH (1 - 1)
k=23 1—‘k (t) r 1—‘k( ) Ck
€k
Function Gy: Carn
DR . — #
Substituting eqn (34) into eqn (31-4) and some algebra AZZ;[EMOHE“"O e +c4,(1 it ean 77ck K6+
one can rewrite eqn (31-4) as: . . (52)
[ea1008 + €419 +——H—+ —*12 ] K\ (#r)
S+cyy Steapn S
= g8’ + ayos” + agys + agyo
41 = 2 s (oames + baga Ybagss + b ;TK‘(*”H
{55 baro (baias +b42) B +bara) (51) Thus the G,; is calculated using convolution integral as:
+ +
a413T 41412? A4S K, ()
byyo(bapis +17412)(1’4135ercm) s
One can use partial fraction decomposition and
determine ey, to rewrite eqn (51) as:
t
V t V V _ _ _ _
Gy = {eqp —————+ eqp — Ty (1) + = j(€411€ (=0 4 ep e O (D)d T H (1 — ——) +
ING) r r Vp
VP
[ c} t c} |
— - . _ t .
T G cosh( ¢ Ty (1) = e™* sinh( &4 T ()] + eqpg ——e ™4 sinh( £, T (1)) (54)
Ly (1) réi
Z ; —C4p (t=7) -c (t=7)\,~CkT o r
Gal+ e [ (eapre™ ) eyyem TN sinh( ¢ T () dTHH (1 - )
koS Ck
L e |
Function Gy: esg esia
- . —K #
Substituting eqn (34) into eqn (31-5) and some algebra kzz‘g[emox T e 54 ot + o) A 1)+
one can rewrite eqn (31-5) as: . . (55)
[esios +esjg +——t—+—12 ] K (#r)
3 ) S+C511 S+C512 S
Gy, = AspyS” FAspS” +aspS+dspg 1 g (Gyr) +
= zsb5k0(b5kls+b5k2)(b5k3s+b5k4) e Thus the G is calculated using convolution integral as:
(54) 3 g volu g .
a S +a S +a N
513 512 511 1(77:1},)
bs19(bsy 15+ bs1y)(bsy13s +’5514) s
One can use partial fraction decomposition and
determine ey, to rewrite eqn (54) as:
t
V t 14 14 _ _ e (1= r
Gy = {esip0 — +esig T (1) + L _[(65116 )y g, CCIND (2)d T H (1 - —) +
r I'@) r rod Vp
Ve
i ct t ct |
=Gyt =&t o —Ct .
feskoo —-le™*H reosh( £, T (1) = ™M sinh( £y ()] + eso - 2me ™M sinh( £, (1) (56)
k k

2 t
k;,3 + rch J Cesprem 7 s egppem e (T )e T sinh( ¢, (e)d T H (1= )
koS k

Ck
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Function G-
Substituting eqn (34) into eqn (31-6) and some algebra
one can rewrite eqn (31-6) as:

3 2
G, = Aek3S~ + deraS” +depS + dego —K r) +
i4 = 1\
5 Dok (Bsj1s + bgra ) bep3s + bera) 7

(57

aélzs + 6125 + dgo
be10 (bs115 + b1y Nbg135 + b614) s

K (r)

One can use partial fraction decomposition and
determine e;, to rewrite eqn (57) as:

_ Cek1 €6k2
14—2[661(00*' t—] 2 Kl(%kr)‘*'
Pyt s S+LM1 S+Cora g
(58)
611 €612
legio+——+———1— K1(77°1”)
S+661] ?+C612 S

Thus the Gy, is calculated using convolution integral as:

t
Gus = feqg L T1(0) 422 [(ege™ ) 4 e ™ N ()} H 1 =) +
r P

v,
t

2
> ?{eﬁkooe*@ Sinh(& () + [ (e + ese ™ + ey
k=2,3" 2k S

Ck

Function Gjs:
Substituting eqn (34) into eqn (31-6) and some algebra
one can rewrite eqn (31-6) as:

3 2
& 738~ + 7408~ +A7S + a7
O = 2 (s +boa)byas £ b 71 K@)+
i D1108 (B0 S + baga )bay3s + byga) A4

(60)

07125 +a7128 +dg0
b710(B7115 + D712 )(b7y38 +1’714) s

K\ (A7)

One can use partial fraction decomposition and
determine ey, to rewrite eqn (60) as:

t

14 14 _ _

Gy =1{em TPF1U)+7P .[(37116 =) +en
r

A

2 t
Z —E—{ezpq0e M sinh(¢, T (1) + I(e7k0 +ee T begppe

k=23 Sk

€

Function Gy:

The term Gj; is the most complex one, since it is
affected by all four body waves existing in the medium.
The complex form of wave numbers of compressional
body waves were simplified in previous part, using the
complete form of shear wave number will generate a
complex convolution integral in time domain. Therefore,

e N (D)d e H (e —VL) +

(59)

—Cora(t=T)\ ~CiT o r

e = sinh(G L (2)d T H(t = —)

Ck

i3 = 2[97/00+ 0, +e7¢ K+
G S5 g s c+c7kl S+ Copn 7’%
(61)
e e
lego +— ‘*’i]*&(?’fl”)

S+cq S+Cyp S

Thus the G;; is calculated using convolution integral as:

»
(62)

270" Ginh (¢, T (2)d T} H (6 ——)
Ck

we use the simplified form of eqn (39) instead of eqn (38)
for shear wave number to reduce the complexity of the
convolution integral. Later in numerical demonstration, the
accuracy of this simplification will be verified.

Hence, Substituting eqns (34) and (39) into eqn (31-7)
and some algebra one can rewrite eqn (31-7) as:

~ C. 1 r Aoy + Aoy S+ aoys® - A 1
Gij — y (7)K0(7S)_ 840 841 8422 [ y 7K1 (75‘ > K ( S)]+
2mu s Vs (byyo +bgyys+57)s 27Vgs Vg 2 V Vs
(=1)'¢ amsz + g + g0 a9k4s + agms + a9A25 T oS + Aoy 4; K ( )+ B; K Reno) (63)
k=23 8(BgroS + by NDygin8 +bgi3) (b + by NBy8 + b3 Wby + b841S +5) 27 A,
+{ gy, S+ dgyo 18" + Qo1s8” + Ay 1pS” + gy + gy K (Ghr )+ B, K (A

(Dgy1S + by )(Bg 38 + by, ) S(bxlls+b8]2)(b813s+b8]4)(b840+b84ls+s ) 2 7%1

118 1. Ashayeri, M. Kamalian, M.K Jafari, M. Biglari, M. Mirmohammad Sadeghi



One can use partial fraction decomposition and determine e;;, to rewrite eqn (63) as:

~ C, 1 r e e..s+e B, r
G, == (9)K,(—s)— (L + 542 Lo+ g o+
/ 27[/1(3) O(VS =Gy (5 +cCoy) — 08240)[2 Vs l(VS ) 27V} O(VS )
z( 1)k+1{exu k2 " i3 +@+ €2 i €ok3 CoraS + €yys }[A — K (Ar)+ "K(;’c "] (64)
k=23 StCuo SHtCy 8 SHCye Stey ((5+cg) —cu) 27 A
+1 &0 n i1 +@+ ) " €13 €145 T €5 }[A 1(7 )+ VK(;DI},)
S+Cyg StTCGy S SHCGyy Sty ((S+Cx41) 0840) 2z
Thus the Gj; is calculated using convolution integral as:
1 i Ve |
dr——Je,, S | I,(t)dr +
{bwjfuf) ZMG[MOFJ4()
2 s
VV [ e —-C e . —Cg, -7
e coshlenat =)+ S M s (1= 2 ))e L (0)de]
, 840
VT
1 { e c *‘(\41(’ T) ”
N Vz[ MOJ.T( )dT"’_[(exu COSh(CM()(t_T))*'Wﬂnh(cxw(t T))) I(7) dT]}H(t_VS)+
Vs Vs
+ C ~Csko(1-T —Csk1(1-T k
(- Lff{ = [j«em,+%m)+(%“-+%“)e ) ey + ey Je T Je S sinh($ T (7 )dT +
kor
jwmwMMMtwhﬁﬁfﬁﬁ%mwmnrwfw”*”mwarﬁMﬂ+
840
=x T ~cyrofi-) esi(i-r) ) e COSh(G L (7)) '
P [I((Qw ey )t ey, +ey, e +(egs +egs e Je W“F T+ (65)
e Cy, € cewtier) —ce COSH(E, T (T r
ﬁawwmwmn ) St~ Cunois ginp ey, (1 e e ML gy T
7 Csa Ii(t) Ck
A Vi ot #
{27[ . ey, ey, )e T 1e, e, Je )Mt )dT +

VP

c

Sots ZEtBs inh( ey, (t = )))e T (2 )dr ]

J.(em cosh(cy,,(t—7))+ Cois

VP

Cs40

dr +

B, 0 ey t(egy e, )eicm(w) +(ey, ey, )eicw(w)
[
()

—CM,(t 7)

—Cye .
8418914 Ginp( e, (t—
Csq0

t
j(em cosh(cgy(t—7))+ Cors

A

5. Numerical Demonstration

Since the analytical expressions of the fundamental
solution are extremely complicated, it is tried to
investigate the accuracy and features of the solutions by
means of a numerical example. In this example the
analytically inversed time domain fundamental solutions

o)

Iy(r)

-
T]}H(t_VT,)

are compared with their numerically inversed Laplace
transform solution counterparts, graphically. Furthermore,
without losing generality and to seek simplicity, the
solutions are verified for liquid degree of saturation of
Sr" =0.5. The example is obtained from experimental
works by Murphy [41] that the fast compressional and
shear wave velocities and attenuations were measured in
various liquid degrees of saturation in Massilon sandstone
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(the liquid is water and gas is air). This example was used
by [10], [11] and [12] to verify their theories. Some of the
parameters that are used in this work are constant at all
liquid degrees of saturation, which are listed in Table (1)
with their values and units. Other parameters are functions
of the water degree of saturation or the capillary pressure.
Hence, a constitutive relation between water degree of

saturation and capillary pressure was assumed as in Fig.
(1), this assumption was made so that to be in accordance
with the nature and porosity of the Massilon sandstone. In
this way, the water degree of saturation corresponding to
air-entry suction and residual suction values were
considered equal to 0.95 and 0.05 respectively.

Table 1 List of material constants Murphy (1982)

Material Properties Symbol Value Unit
Solid Matrix Bulk Modulus D" 3.50x10" Pa
Water Bulk Modulus D" 2.25x10° Pa
Air Bulk Modulus D# 1.45x10° Pa
Density of Solid Matrix o 2650 kg/m’
Density of Liquid il 997 kg/m®
Density of Gas ol 1.10 kg/m’
Porosity ¢ 0.23 -
Intrinsic Permeability K 2.50x107" m?
Absolute Viscosity of Liquid Vi 1.0x10° Pas
Absolute Viscosity of Gas v 1.8x107 Pas

o \
. \

\

0.5 \

0.4

Liquid degree of saturation

0.3 \
0.2 ;

0.1 ,‘\

_____________

0
LOE+00 1.0E+01 1.0E+02

1L.OE+03 1.0E+04 LOE+05 1.0E+06

Capillary pressure (kPa)

Fig. 1 Constitutive relation between capillary pressure and liquid degree of saturation

Matching this constitutive relation with eqn (8) with

b" =S¥ and using eqn (9) will give the values of some
other physical parameters. Permeability of the medium
with respect to water and air are related to the water degree
of saturation and capillary pressure through the model
proposed by Brooks and Corey [42] with € =1 as follows:

1 (V%) P <40kPa
K = ’
(V%xj)—")z*” p. > 40kPa
K Ig\2+36 (66)
(=)A=5r7) P, < 40kPa
kS = v

| Ea-E2a-EY2) p, > aokpa
v Pe

¢
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Table (2) summarizes the values of these parameters
for water degrees of saturation equal to 0.5.

Table 2 Material parameters and dimensionless quantities used
for calculating analytically inversed solutions

. Dimensionless
Material parameters i
quantitics
Symbol Value Unit  Symbol Value
S’ 0.5 v, 1.0
#" 0.115 - ¢, 0.3107
#* 0.115 - ¢;  6.77x10°
bl 0.5 - S, 0882
be 0.5 - 07944
N 184x10°  Pa’ 4 0.6997
k" 4.68x10""  m?/Pas Tp 2236
k* 3.80x10*  m’/Pas T, 7.197
A 6.0x10’ Pa T; 330.291
H 1.45x10° Pa Ts 3.196

It was noticed in order to have the results in a
meaningful manner, the equations and quantities should be
non-dimensional. Thus, by means of eqns (17) to (20) the
dimensionless quantities are calculated and used in
numerical demonstration. Since the variation of the
permeability of medium with respect to liquid and gas are
very large (four orders of magnitude), a model for variation

of K similar to Brooks and Corey's model is used:

(%) . <40kPa
- v
K= / 40 2436 (67)
VEYkE(1-—) 2 p.>40kPa
Pc

Numerical inversion of the Laplace transform
fundamental solution was calculated by DINLAP
subroutine of Fortran Power Station 4.0, which is based on
applying the epsilon algorithm to the complex Fourier

series obtained as a discrete approximation to the inversion
integral [43]. As previously discussed, the fast
compressional wave number was assumed as eqn (35).
Therefore, non-dimensional eqn (33) is reduced one order
by eqn (35) as:

V(G + AW +(Cy+ C A +A4D) =0 (68)

And the second and the third compressional wave with
shear wave numbers are:

A= %[—(64 +A)FA]
(69)

A= G+ A) 4+ C A +A)

i= |2 (70)
4

The analytically inversed time domain fundamental
solution was found by calculating integrals using accurate
numerical program with the non-dimensional wave numbers
of eqns (34), (35), and (39). Table (2) summarizes the
dimensionless quantities used for calculating integrals.

Figures (2) to (10) show some components of two-
dimensional fundamental solution. Note that other
components differ in the direction with the following ones,
and for the verification of the analytical solution it is
enough to show the accuracy of the analytical solution of
the following components. The applied force point or the
liquid or gas source point is located at origin (0,0) and the
receiver is chosen at the non-dimensional coordinate (7,2).
Referring to dimensionless wave velocities in table (2), the
non-dimensional time required for the four waves to reach
receiver are calculated (Table 2). The non-dimensional
time required for the fast compressional wave to reach the
receiver point, Tp = 2.236 is clearly found on the all the
components of the fundamental solution. It is mostly
observed as an impulse in the magnitude of the
component. Shortly after the fast compressional wave, the
shear wave arrives to the receiver, Tg = 3.196, but it is not
observable in pressure components of the fundamental
solution due to disability of the shear wave to propagate in
liquid and gas.

International Journal of Civil Engineering Vol. 12, No. 2, Transaction B: Geotechnical Engineering, April 2014 121



1.4E+00

—— Numerical Inversion
------- Analytical Solution
1.2E+00 y
1.0E+00 -
1.0E+00
S 5001 - 93501
-G I
p 8.0E-01 i
‘% 7.0E-01 S
= 6.0E-01 - -
Q 6.0E-01 - ’/’,..
E- 5.0E-01 e
) -
& 4.0E-01 4 4.0E-01 o
g 3.0E-01
/
2 0E-01 4 2.0E-01 ff
1.0E-01 fl
0.0E+00 —'J
0.0E+00 o
0 5 1 15 20 25 30 35 40 45 50
'2.0E'01 T T T T T T
0 50 100 150 200 250 300 350
Non-dimensional Time
Fig. 2 Non-dimensional G, at (1,2) for $/%=0.5
1.2E-01
1.0E-01
1.1E-01 - ——
1.0E-01 A B.0E-02 [
; 7.0802 l
9.0E-02 6.0E-02 - “L
5.0E-02 .l \
Al A
o SO0E02 o II
O 7o0e02 - Ay | I |
g 2.0E-02 |
2 6.0E-02 - 1.0E02 -
-] J
= 0.0E+00 {—
@  50E-02 -
E -1.0E-02 T v N v . - r - . 1
:c" 0 5 10 15 20 25 30 35 40 45 50
v 4.0E-02 4
= \
o
< 30E-02 |
2.0E-02 -
1.0E-02 -
0.0E+00 ! —— Numerical Inversion
------- Analytical Solution
-1.0E-02 T T T T T T

0 50 100 150 200 250 300 350
Non-dimensional Time
Fig. 3 Non-dimensional G, at (1,2) for $%=0.5
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2.2E-03

—— Numerical Inversion

20E-03 ) ... Analytical Solution
1.8E-03 -
1.6E-03 -
2 1.4E-03 -
Q
®
& 12E-03 |
i=]
2 1.0E-03 |
g
-..%- 8.0E-04 -
s
S 6.0E-04 -
4.0E-04
2.0E-04 -
0.0E+00 - | ]
’ 1] 5 10 15 20 25 30 s 40 45 50
-2.0E-04 . . ; : ; .
0 50 100 150 200 250 300 350
Non-dimensional Time
Fig. 4 Non-dimensional G; at (1,2) for $/%=0.5
2.6E-04
—— Numerical Inversion
------- Analytical Solution
2.2E-04 -
1.8E-04 -
u’; 2.6E-04 +
-g 1.4E-04 =
Q ' 1.8E-04 1
2
QD 1.4E04 1
E 1.0E-04
? 1.0E-04 4
5
= 6.0E-05 -
6.0E-05 - |
2.0E-05 | ‘I‘ o
-2.0E-05
2.0E-05 };.. 0 5 10 15 20 % 30 35 40 45 50
-2.0E-05 T T T T T T
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Non-dimensional Time

Fig. 5 Non-dimensional Gj; at (1,2) for $r4=0.5
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Non-dimensional Gy

Non-dimensional Gas
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=1.0E-04 + -
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Fig. 6 Non-dimensional G, at (1,2) for $=0.5
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Fig. 7 Non-dimensional G; at (1,2) for $r4=0.5
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Non-dimensional Gz

Non-dimensional Gy
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Fig. 8 Non-dimensional Gj; at (1,2) for $r4=0.5
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Fig. 9 Non-dimensional G, at (1,2) for $4=0.5
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1.4E-03

—— Numerical Inversion
------- Analytical Solution
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Fig. 10 Non-dimensional G, at (1,2) for S¥4=0.5

Figures (2) to (10) all support the theory that second
and third compressional waves are of diffusive wave kind
and are strongly attenuated with high dissipative factors
(table 2). With respect to the arrival times of the second
and third compressional waves, 7, = 7.197 and T; =
330.291 respectively, the amplitude of these waves were
attenuated so strongly that gave no tangible contribution to
the magnitude of the components. It seems that the second
compressional wave front is detected by G;;, G4 and G,
but no significant contribution was given to G,;; and G,.
The highly dissipative nature of the third compressional
wave results no contribution of this wave to the
components of the fundamental solution of receiver point
at (1,2). The wave front of the third compressional wave
might be observed at receivers very close to the origin, but
it is strongly attenuated from the origin and it contribution
can be neglected at short distances from the origin.

To compare the results of this study with the 3D-
fundamental solution of the same medium given in [39],
G, at the receiver point (1,2,3) is represented in Fig. (11).
Same features of 2D-fundamental solution are observed in
the 3D-one, like observation of the fast compressional and
shear wave fronts. However, the general shape is different
because of the dimension of the problem. The 2D-
fundamental solution is obtained for the line force in
space, while the 3D-fundamental solution is obtained for
the point force in space. In the 2D-fundamental solution
the unit Heaviside force in the origin is extended over the
third axis, hence the effects of infinite number of point
forces along the third axis are integrated. This results in
gradually increasing magnitude of displacement to the
limiting value at longer times and higher magnitude of the
total displacement of 2D-fundamental solution.

[Fig. 11]

Generally speaking, excellent agreement of analytically
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inversed solution and numerical Laplace inversion is seen.
The agreement between analytically inversed solution and
numerical inversion for displacement component of
fundamental solution (Figs. 2, 3) justifies the simplifying
assumption of neglecting shear wave attenuation. Figures
(8) to (10) present the fact that the pressure solutions are
not affected by the shear wave and pressure change due to
line source of liquid or gas at origin reach to a steady state
at longer times in the receiver point.

6. Conclusion

This paper presented the closed-form time domain
fundamental solution for the 2D dynamic unsaturated
poroelasticity. Based on the key fact of the Biot's theory, it
was assumed that the fast compressional wave is true wave
and its attenuation is practically negligible. In order to
reduce the complexity of the convolution integrals in the
displacement component of the transient fundamental
solution, the attenuation of the shear wave was assumed
negligible too.

A set of numerical results was presented, which
verifies the accuracy of the assumptions made for the
analytically inversed transient fundamental solution and
demonstrates some salient features of elastic waves
propagating in unsaturated porous media.

The presented transient fundamental solution enables
the future development of an efficient time domain BEM
in order to solve various wave propagation problems in
linear unsaturated poroelastic media as well as hybrid
FEM-BEM to solve non-linear unsaturated poroelastic
media where the far field is formulated by the boundary
elements and the near field by the non-linear finite
elements.
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