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Abstract 

This paper presents time domain fundamental solutions for the extended Biot's dynamic formulations of two-dimensional 
(2D) unsaturated poroelasticity. Unsaturated porous media is considered as a porous media in which the voids are saturated 
with two immiscible fluids, i.e. liquid and gas. At first, the corresponding explicit Laplace transform domain fundamental 
solution is obtained in terms of skeleton displacements, as well as liquid and gas pressures. Subsequently, the closed-form time 
domain fundamental solutions are derived by analytical inversion of the Laplace transform domain solutions. Finally, a set of 
numerical results are presented which verifies the accuracy of the analytically inversed transient fundamental solution and 
demonstrates some salient features of the elastic waves in unsaturated media. 

Keywords: Unsaturated poroelastodynamics, Wave propagation, Fundamental solution, Boundary element method, Two-
dimensional problem. 

1. Introduction 

The theory of elasticity for single-fluid saturated 
porous media was presented in a series of publications by 
Biot [1,2,3,4] standing on the concepts and principles of 
continuum mechanics. This theory which ignores the 
microscopic level and assumes that measurable 
macroscopic values of classic continuum mechanics are 
still relevant, was generalized in the context of 
thermodynamics of open continua to include inelastic 
behavior and also chemically active unsaturated porous 
media [5,6,7]. In this extension which is the bases of the 
governing equations that are used in this paper, 
unsaturated porous medium is considered as the 
superposition of several interacting continua in time and 
space that overlap in a representative elementary volume. 

Following to his works, Biot presented the theory of 
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elastic wave propagation in isotropic porous solid 
saturated by a viscous fluid [8,9]. This theory explains the 
existence of three body waves propagating in the single 
fluid saturated porous media. These waves are two 
compressional waves (P1 & P2-wave), and a shear wave 
(S-wave). After three decades, Berryman et al. [10] 
attempted to extend the theory that admits water and air 
into the voids under the assumption that the wavelength of 
the excitation is long enough that the capillary pressure 
changes are negligible. They confirmed the existence of 
three body waves in the double fluid-saturated porous 
solid. Later, Wei and Muraleetharan [11] utilized the 
theory of mixtures with interfaces and expressed acoustic 
waves in unsaturated porous medium. They showed, there 
exist three compressional waves instead of two, which the 
third one will vanish at limiting case of single fluid 
saturated medium. In a recent study, unsaturated 
poromechanics was used to derive the wave equations and 
obtain a full extension of Biot's theory of elastic waves in 
unsaturated porous solids with and without dissipation at 
low frequency range [12]. This extension, confirms the 
existence of three compressional waves and one shear 
wave propagating in the unsaturated porous solid so that 
the second and third waves are highly attenuating and vice 
versa the attenuation of the first compressional wave and 
the shear wave are negligible. 

Fortunately, with the advent of high-speed digital 
computers, more complex engineering analyses can be 
performed via computational methods like FEM, BEM, 
FDM. With the recent growing interest in the boundary 
element method and its application to the various branches 
of applied mechanics and appearance of comprehensive 
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domain type numerical methods for unsaturated 
poromechanics, there is a need for determination of 
transient fundamental solution for dynamic unsaturated 
poroelasticity for boundary type methods. 

History of fundamental solutions for saturated 
poroelasticity starts with fundamental solutions for the 
corresponding quasistatic problem were derived by Cleary 
[13] following from the earlier work of Nowascki [14] in 
thermoelasticity, while closed-form Laplace domain 
quasistatic poroelastic fundamental solutions were 
obtained by Cheng and Liggett [15,16]. However, it seems 
that the first attempt to obtain fundamental solutions for 
dynamic poroelasticity was made by Burridge and Vargas 
[17], who used the saddle point method to obtain 
displacements at large distances due to a point force in the 
solid. Later, Norris [18] derived time harmonic Green 
functions for a point force in the solid and a point force in 
the fluid. He also obtained explicit asymptotic 
approximations for far-field displacements, as well as 
those for high and low frequency responses. Progressively, 
Kaynia and Banerjee [19] used a solution scheme similar 
to that of Norris [18] and derived the fundamental solution 
in the Laplace transform domain as well as transient short-
time solution. 

Biot had formulated the dynamic poroelasticity in 
terms of two displacement fields, namely those of the solid 
skeleton and those of the liquid. For the numerical solution 
of practical boundary value problems, however, it is more 
convenient to use the displacement components of the 
solid and the pressure in the fluid. For this reason, Biot's 
equations are sometimes cast in terms of these quantities. 
This reformulation can, however, be achieved only in a 
transformed domain precisely, and with assumptions in 
time domain. The advantage of the so called u-p 
formulation is that the resulting coupled equations 
resemble those of dynamic thermoelasticity for which the 
Green functions were available [14]. This formulation has 
been used by Bonnet [20] and Boutin et al. [21] to derive 
steady-state Green's function of poroelasticity by 
Kupradze [22] Method. Kaynia [23] adopted a similar 
approach to derive explicit expressions in Laplace 
transform domain for Green's functions of dynamic 
poroelasticity for suddenly applied point force in the solid 
and a sudden injection of fluid into pores. The errors in 
Bonnet's paper have been shown by Dominguez [24,25] 
who set and applied the formulation for the time harmonic 
saturated poroelastic problems. To fulfill the absence of 
the fundamental solutions to be applied to the Biot's full 
dynamic equations, Chen [26,27] presented explicit 
Laplace transform and approximate transient two and 
three-dimensional fundamental solution of Biot's full 
dynamic poroelasticity. Further works have been done on 
transient fundamental solutions of saturated dynamic 
poroelasticity based on Zienkiewicz and Shiomi's [28] u-p 
reformulation of the Biot's equations in time domain for 
medium speed phenomena [29], and also on incorporating 
incompressibility of solid matrix and liquid compared to 
compressibility of the skeleton [30,31,32]. Further details 
on the fundamental solutions of saturated 
poroelastodynamics can be found in [33]. 

By appearance of new static and dynamic problems of 
unsaturated porous media in science and engineering fields 
like geophysics, geomechanics, geotechnical and 
environmental engineering, a growing need to develop 
numerical methods for these problems was found. Two 
and three dimensional time domain fundamental solutions 
for quasi-static unsaturated soils were presented by 
Gatmiri and Jabbari [34,35]. They used the state variables 
of mean net stress and soil suction in order to represent 
generalized elastic constitutive relation for soil skeleton. 
The fundamental solutions were presented in terms of soil 
skeleton displacement as well as water and air pressures. 
In a recent publication, Maghoul et al. [36] presented the 
three-dimensional time domain coupled thermo-hydro-
mechanical fundamental solution for the same quasi-static 
loading condition of unsaturated soils. 

So far as the authors know, attempts to find full 
dynamic fundamental solution of unsaturated porous 
media were started by Ashayeri et al. [37,38]. They 
derived the governing boundary integral equation as well 
as the 2D explicit Laplace transform fundamental solution 
of full dynamic unsaturated poroelasticity in terms of 
skeleton displacement and liquid and gas pressures. More 
recently, analytical 3D transient elastodynamic 
fundamental solution for unsaturated soils was presented 
by Ashayeri et al. [39]. The main aim of this paper is to 
extend the previous works to the time domain and to 
present the closed-form 2D transient fundamental solution 
for the full dynamic unsaturated poroelasticity. 

2. Governing Equations 

The governing differential equations are derived by 
considering the whole media as superposition of three 
continuous media in time and space. These continuous 
media are skeleton, liquid, and gas. The skeleton is 
composed of solid matrix and empty connected pores. 
Liquid and gas are filling the pores with the remaining 
space without the solid matrix. The basic equations of 
mass balance of constituents, momentum balance of whole 
mixture and constituents and liquid and gas mass 
conduction laws are comprehensively presented by Coussy 
[5,6]. In the following the final equations are summarized 
for an infinitesimal isothermal transformation. 
Furthermore, as will be explained later the solid matrix of 
the skeleton is assumed incompressible compared to the 
skeleton. It is worth noting that the summation convention 
is used in the formulations. 

Liquid and Gas mass balance 
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where 
 glq,  is the fluid phase "α" volume fraction; 

iiu ,  is the skeleton volume dilatation or volumetric 

strain; 
 glqp ,  is the liquid or gas pressure; 

 glqD ,  is the 

bulk modulus of the liquid or gas; iu  is the displacement 
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vector of the skeleton particle; 
glq

iq
,

  is the liquid or 

gas flux vector and 
 glq,  is the rate of liquid or gas 

injection to the medium. 
Momentum balance for whole mixture 
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where glq
m

,)()1(  
  is the apparent 

mass density of the whole medium, 
 glqm ,,  is the 

intrinsic mass density of the solid matrix, liquid or gas, 
glq   is the total porosity, if  is the body force 

density per volume unit, 
glq

iu
,

  is the relative 

displacement vector of the liquid or gas particle with 
respect to the skeleton particle, and ij is the total stress 

tensor. 
Fluid mass conduction laws (generalized Darcy law) 
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where 
 glqk ,  is the isotropic permeability coefficient 

of the liquid or gas phase. 
In addition to eqns. (1) to (4), constitutive relations 

should be provided for each constituent. The detail of 
extracting constitutive relations from the first and second 
thermodynamics laws for unsaturated poroelasticity was 
presented in [5,6] and the summary of the equations are 
represented here for an isotropic material: 
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where ,  are drained Lame coefficients, b  is the 

isotropic Biot’s coefficient of fluid phase " ", and M  
links the increment of fluid pressure of phase " " to 
increment of fluid mass content of phase " " while the 
test is undrained with respect to the fluid phase other than 
" ". 

The thermodynamic stability condition of the system 

implies the following restrictions )( glqlqg MM  : 
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where Dsk and Dm are bulk modules of skeleton and 

solid matrix, respectively. 
Usually, it is difficult to perform experimental tests to 

determine coefficients of eqn (6) for liquid and gas. 
Meanwhile, assuming solid matrix is incompressible with 
respect to the porous skeleton (i.e. Dsk/Dm≈0) will simplify 
eqn (6) into one constitutive relation in terms of the 

capillary pressure and liquid degree of saturation 
increments. The fundamental solution can be found 
without this assumption, but due to the difficulty of 
determination of material properties, the solutions will be 
very difficult to use or even useless, while with this 
assumption, tolerable limitation on the generality of the 
solutions is imposed. Further detail on the extraction of 
this constitutive relation can be found in [5]; 
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where capillary pressure or suction is defined as 

lqg
c ppp  , liquid degree of saturation  /lqlqSr  , 

and the square matrix of 22][ 
N is the inverse of square 

matrix 22][ 
M . 

Equation (7) assures the existence of inverse of

22][ 
M  and the four components of 22][ 

N  are: 
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Therefore, the final constitutive relations for an 

isotropic unsaturated linear elastic medium using eqns (5), 
(8) and definition of liquid degree of saturation are as 
followings: 

Isotropic linear elastic skeleton 
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Capillary pressure relation 
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One can omit the term lq )1(   between eqns (1), (2), 

and (11): 
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Taking the Laplace transform of eqns (3), (4) for both 

fluids, (12), and (13) with zero initial conditions and 
performing appropriate substitution, one obtains a new 
form of the equations in Laplace transform space in terms 
of spatial derivatives of skeleton displacement iu~ , liquid 

and gas pressures glq pp ~,~  that is the precise u-p 

formulation in transformed domain. 
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where s is the Laplace transform parameter and the 
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tilde denotes the Laplace transformation, and 
1)/1(  smk  ,   /m , sbb   ,

ss gglqlq 
22

 , with 2,1, ji . 

Prior to find Laplace transform domain fundamental 
solutions, it is helpful to present the non-dimensional 
quantities and governing equations. Thus we define 
dimensionless coordinates and time by means of: 

 

P

i
i VK

x
X


    and   

K

t
T


  (17) 

 

where K  has the physical dimension of permeability 
and is related to geometrical average of the permeability of 
the medium with respect to liquid and gas, its value will be 
discussed more in the numerical demonstration section. 
And PV  has the dimension of velocity given as: 
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Next, we define a dimensionless skeleton displacement 

and pore fluids' pressures through: 
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Therefore, the non-dimensional forms of eqns (14) to 

(16) are: 
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where the parameters are defined as in eqns (14) to 

(16) but with dimensionless quantities. 
Hence, the non-dimensional governing equations and 

their corresponding fundamental solution take the same 
form as natural ones. 

3. Laplace Transform Domain Fundamental 
Solution 

Fundamental solutions are the response of the medium 
to point excitation which is a Dirac delta function in space, 
δ(x) and either a Dirac delta function, δ(t) or a Heaviside 
step function in time, H(t). However, for its future 
application in BEM it is better to consider the solution 
which results from a Heaviside step function in time. Thus, 
for a continuous unit line force in the i-th direction 

suddenly applied at the origin, i.e. fi(x,t)=δ(x)·H(t), and a 
unit rate of liquid line injection at the origin, i.e. 
γlq(x,t)=δ(x)·H(t), and a unit rate of gas line injection at the 
origin, i.e. γg(x,t)=δ(x)·H(t), the Laplace transform of 
which is s-1 δ(x). The two-dimensional Laplace domain 
fundamental solutions are found by following the 
Kupradze's Method [22]. 

It is convenient to write the basic eqns (14) to (16) or 
the non-dimensional ones eqns (21) to (23) for the two-
dimensional case in their matrix form as: 
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where 2  is the Laplacian operator. 
Therefore, the problem is to find solution matrix

44]
~
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where I  is the unit matrix. Following the Kupradze 

method [22], the fundamental solution is:  
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Equation (27) enables us to determine the sixteen 
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where the coefficients of eqn (29) are presented in 

Appendix. 
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Equation (28) is a polynomial of order four of 2 , 

which one of its roots is the  /22 ss   that s
corresponds to the wave number of the shear wave. The 
remaining part of eqn (28) is a cubic polynomial in terms 

of 2 , which can have three roots as 2
3
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321 ,,   resemble the wave numbers of compressional 

waves. After some algebra one can find 
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square of distance of receiver from origin (0,0), and 
)(0 rK j  is the modified Bessel function of second kind of 

zero order. 
Refer to eqn (27) the components of fundamental 

solution matrix are; 
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where )(1 rK i  is the modified Bessel function of 

second kind of first order and; 
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(32-2) 

 
In the above Laplace transform domain solutions, i.e. 

eqns (31), ijG
~

 is the displacement of solid skeleton in i-th 

direction at a point (xi,xj) due to the unit Heaviside line 
force in j-th direction at origin. Whereas jG3

~  is the liquid 

pressure at a point (xi,xj) due to the unit Heaviside line 
force in j-th direction at origin. Similarly, jG4

~  is the gas 

pressure at a point (xi,xj) due to the unit Heaviside line 
force in j-th direction at origin. Also 43

~
,

~
ii GG  respectively, 

are the displacements of the solid skeleton in i-th direction 
at a point (xi,xj) due to the unit Heaviside rate of liquid 
and gas line injection at origin. 4433

~
,

~
GG  are liquid and gas 

pressure at a point (xi,xj) due to the unit Heaviside rate of 
liquid and gas line injection at origin, respectively. And 

34
~
G  or 43

~
G are the liquid or gas pressure at a point (xi,xj) 

due to the unit Heaviside rate of gas or liquid line injection 
at origin. 

4. Transient Fundamental Solution 

With the Laplace transform domain fundamental 
solution being derived, we now proceed to derive its 
counterpart in the time domain by using analytical 
inversion. Due to the complexity of the fundamental 
solution itself and complexity of wave numbers or roots of 
eqn (28) for unsaturated medium, the analytically inversed 
time domain solution seems to be extremely difficult. 
Afterward, we try to reduce the complexity of the 
analytical inversion problem by means of using 
appropriate approximation applied on the complex form of 
wave numbers. These approximations are validated for 
solutions corresponding to convenient values of Laplace 
parameter s, and more interestingly became more accurate 
with s decreasing that means low frequency range or 
longer time solutions. 

4.1. Discussion on the wave numbers' form 

In section 3, it was shown in eqn (28) that the 
determinant of differential operator matrix is a polynomial 
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of order four in terms of Laplacian operator. Fortunately, 
the polynomial can be reduced to cubic form easily by 
separating the wave number corresponding to shear wave, 
and reduce the problem of finding compressional wave 
numbers to finding zeros of a cubic polynomial as: 
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where the coefficients are introduced in eqns (29-1) to 

(29-3). Following to the algebraic relation between roots 
of a cubic polynomial and its coefficients we have: 
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Now similar to saturated media [27], we assume the 

wave numbers have the form of: 
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where ck and ζk are related to the velocity and 

attenuation of the k-th compressional wave, respectively. 
Comparing eqn (33-3) with eqn (29-3) reveals that it is 
convenient to assume the attenuation of the first 
compressional wave is negligible compared with the 
second and third waves i.e. ζ1 ≈ 0. Thus, the wave number 
of the first compressional wave takes the form of  

 
1

1
 PsV  (35) 

 
where VP is the phase wave velocity of fast 

compressional wave. This is in accordance with the results 
of calculation of phase wave velocity and attenuation of 
compressional and shear waves obtained from extended 
theory of Biot's elastic wave propagation into unsaturated 
media performed by the authors in a separate research. 
Ashayeri et al. [12] showed the velocity of the fast 
compressional wave obtained in absence of dissipation 
reads: 
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Introduction of dissipation to the theory at low 

frequency range shows the velocity of the fast 
compressional wave changes insignificantly and its 
attenuation is negligible compared to other compressional 
waves [13]. It is worth noting that the eqn (36) takes the 
form of fast compressional wave velocity known in 
elastodynamics and saturated poroelastodynamics limiting 

cases with appropriate values of b and M . 
Back to the eqns (33-1) and (33-2) with keeping in 

mind (ζ1 ≈ 0) and solving two wave numbers in terms of 
the third one and using eqns (29-1) to (29-3) gives the 
following approximation for the velocity and attenuation 

of the waves i.e. ck , ζk from the current equations: 
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Shear wave number is rewritten in terms of Laplace 

transform parameter s: 
 

)(
1

22

2

11

1

s

s

s

s

s
s s

s

s

s
s

c 









  (38) 

1))(
2

1
1( 








 gglqlq

sc  (38-1) 

1
1 ))(

2

1
1(

2

2











gglqlq

lq

lq

s
k

,
lqlq

lq

s
k 
 11

 (38-2) 

1
2 ))(

2

1
1(

2

2











gglqlq

g

g

s
k

,
gg

g

s
k 
 22

  (38-3) 

 
where cs , ζs1 and ζs2 are related to the shear wave 

velocity and attenuation, respectively. Theoretical 
expressions show the shear wave number of unsaturated 
media in absence of dissipation reads 
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Introduction of dissipation in to the theory reveals that 

the variation of shear wave phase velocity at different 
frequencies is insignificant and its attenuation is as the 
same order as the fast compressional wave [13]. 

4.2. Analytically inversed transient solution 

Now we begin to find the analytical inverse of the 
Laplace transform fundamental solutions using available 
Laplace transform tables [40]. The most important Laplace 
transform formulas are listed below: 
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Furthermore, we define the following intermediate 

function to seek simplicity of expressions: 
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The coefficients introduced in the following part can be 

found in Appendix. 
Function G44: 
Substituting eqn (34) into eqn (31-1) and some algebra 

one can rewrite eqn (31-1) as: 
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One can use partial fraction decomposition and 
determine eijkl to rewrite eqn (42) as: 
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Thus the G44 is calculated using convolution integral as: 
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Function G33: 
Substituting eqn (34) into eqn (31-2) and some algebra 

one can rewrite eqn (31-2) as: 
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One can use partial fraction decomposition and 

determine eijkl to rewrite eqn (45) as: 
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Thus the G33 is calculated using convolution integral as: 
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Function G34: 
Substituting eqn (34) into eqn (31-3) and some algebra 

one can rewrite eqn (31-3) as: 
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One can use partial fraction decomposition and 

determine eijkl to rewrite eqn (48) as: 
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Thus the G34 is calculated using convolution integral as: 
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Function G4j: 
Substituting eqn (34) into eqn (31-4) and some algebra 

one can rewrite eqn (31-4) as: 
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One can use partial fraction decomposition and 

determine eijkl to rewrite eqn (51) as: 
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Thus the G4j is calculated using convolution integral as: 
 
 
 

 















































3,2
)(

24
)(

14

2

2

04

2

004

1
)(

412
)(

4111410
1

41004

)(}))(sinh()(

))(sinh())](sinh())(cosh(
)(

[{

)(})()()(
)(

{

2414

412411

k
k

t

c

r

kk
tc

k
tc

k
k

k

kk
t

k

k
kkk

t
kk

k

tk
k

P

t

V

r

tctcPPP
j

c

r
tHdeeeee

r

c

te
r

c
etet

t

t
e

r

c
e

V

r
tHdeeee

r

V
t

r

V
e

t

t

r

V
eG

k

kkk

kkk

P

















 (54) 

 
Function G3j: 
Substituting eqn (34) into eqn (31-5) and some algebra 

one can rewrite eqn (31-5) as: 
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One can use partial fraction decomposition and 

determine eijkl to rewrite eqn (54) as: 
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Thus the G3j is calculated using convolution integral as: 
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Function Gi4: 
Substituting eqn (34) into eqn (31-6) and some algebra 

one can rewrite eqn (31-6) as: 
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One can use partial fraction decomposition and 

determine eijkl to rewrite eqn (57) as: 
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Thus the Gi4 is calculated using convolution integral as: 
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Function Gi3: 
Substituting eqn (34) into eqn (31-6) and some algebra 

one can rewrite eqn (31-6) as: 
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One can use partial fraction decomposition and 

determine eijkl to rewrite eqn (60) as: 
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Thus the Gi3 is calculated using convolution integral as: 
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Function Gij: 
The term Gij is the most complex one, since it is 

affected by all four body waves existing in the medium. 
The complex form of wave numbers of compressional 
body waves were simplified in previous part, using the 
complete form of shear wave number will generate a 
complex convolution integral in time domain. Therefore, 

we use the simplified form of eqn (39) instead of eqn (38) 
for shear wave number to reduce the complexity of the 
convolution integral. Later in numerical demonstration, the 
accuracy of this simplification will be verified. 

Hence, Substituting eqns (34) and (39) into eqn (31-7) 
and some algebra one can rewrite eqn (31-7) as: 
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One can use partial fraction decomposition and determine eijkl to rewrite eqn (63) as: 
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Thus the Gij is calculated using convolution integral as: 
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5. Numerical Demonstration 

Since the analytical expressions of the fundamental 
solution are extremely complicated, it is tried to 
investigate the accuracy and features of the solutions by 
means of a numerical example. In this example the 
analytically inversed time domain fundamental solutions 

are compared with their numerically inversed Laplace 
transform solution counterparts, graphically. Furthermore, 
without losing generality and to seek simplicity, the 
solutions are verified for liquid degree of saturation of 

5.0lqSr . The example is obtained from experimental 
works by Murphy [41] that the fast compressional and 
shear wave velocities and attenuations were measured in 
various liquid degrees of saturation in Massilon sandstone 
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(the liquid is water and gas is air). This example was used 
by [10], [11] and [12] to verify their theories. Some of the 
parameters that are used in this work are constant at all 
liquid degrees of saturation, which are listed in Table (1) 
with their values and units. Other parameters are functions 
of the water degree of saturation or the capillary pressure. 
Hence, a constitutive relation between water degree of 

saturation and capillary pressure was assumed as in Fig. 
(1), this assumption was made so that to be in accordance 
with the nature and porosity of the Massilon sandstone. In 
this way, the water degree of saturation corresponding to 
air-entry suction and residual suction values were 
considered equal to 0.95 and 0.05 respectively. 

 
Table 1 List of material constants Murphy (1982) 

Material Properties Symbol Value Unit 
Solid Matrix Bulk Modulus Dm 3.501010 Pa 

Water Bulk Modulus Dlq 2.25109 Pa 
Air Bulk Modulus Dg 1.45105 Pa 

Density of Solid Matrix m 2650 kg/m3 
Density of Liquid lq 997 kg/m3 

Density of Gas g 1.10 kg/m3 
Porosity  0.23 - 

Intrinsic Permeability K 2.5010-12 m2 
Absolute Viscosity of Liquid lq 1.010-3 Pas 

Absolute Viscosity of Gas g 1.810-5 Pas 
 
 

 
Fig. 1 Constitutive relation between capillary pressure and liquid degree of saturation 

 
 
 
Matching this constitutive relation with eqn (8) with 

lqlq Srb   and using eqn (9) will give the values of some 
other physical parameters. Permeability of the medium 
with respect to water and air are related to the water degree 
of saturation and capillary pressure through the model 
proposed by Brooks and Corey [42] with 1  as follows: 
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Table (2) summarizes the values of these parameters 
for water degrees of saturation equal to 0.5. 

 
Table 2 Material parameters and dimensionless quantities used 

for calculating analytically inversed solutions 

Material parameters Dimensionless 
quantities 

Symbol Value Unit Symbol Value

Srlq 0.5  PV̂  1.0 
lq  0.115 - 2ĉ  0.3107 
g  0.115 - 

 6.7710-3 
lqb  0.5 - 

2̂  0.8822 

gb  0.5 - 3̂  0.7944 

lqlqN  1.8410-6 Pa-1 
sV̂  0.6997 

lqk  4.6810-11 m2/Pas TP 2.236 
gk  3.8010-8 m2/Pas T2 7.197 

  6.0107 Pa T3 330.291 
  1.45109 Pa TS 3.196

 
It was noticed in order to have the results in a 

meaningful manner, the equations and quantities should be 
non-dimensional. Thus, by means of eqns (17) to (20) the 
dimensionless quantities are calculated and used in 
numerical demonstration. Since the variation of the 
permeability of medium with respect to liquid and gas are 
very large (four orders of magnitude), a model for variation 

of K  similar to Brooks and Corey's model is used: 
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Numerical inversion of the Laplace transform 

fundamental solution was calculated by DINLAP 
subroutine of Fortran Power Station 4.0, which is based on 
applying the epsilon algorithm to the complex Fourier 

series obtained as a discrete approximation to the inversion 
integral [43]. As previously discussed, the fast 
compressional wave number was assumed as eqn (35). 
Therefore, non-dimensional eqn (33) is reduced one order 
by eqn (35) as: 
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And the second and the third compressional wave with 

shear wave numbers are: 
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The analytically inversed time domain fundamental 

solution was found by calculating integrals using accurate 
numerical program with the non-dimensional wave numbers 
of eqns (34), (35), and (39). Table (2) summarizes the 
dimensionless quantities used for calculating integrals. 

Figures (2) to (10) show some components of two-
dimensional fundamental solution. Note that other 
components differ in the direction with the following ones, 
and for the verification of the analytical solution it is 
enough to show the accuracy of the analytical solution of 
the following components. The applied force point or the 
liquid or gas source point is located at origin (0,0) and the 
receiver is chosen at the non-dimensional coordinate (1,2). 
Referring to dimensionless wave velocities in table (2), the 
non-dimensional time required for the four waves to reach 
receiver are calculated (Table 2). The non-dimensional 
time required for the fast compressional wave to reach the 
receiver point, TP = 2.236 is clearly found on the all the 
components of the fundamental solution. It is mostly 
observed as an impulse in the magnitude of the 
component. Shortly after the fast compressional wave, the 
shear wave arrives to the receiver, TS = 3.196, but it is not 
observable in pressure components of the fundamental 
solution due to disability of the shear wave to propagate in 
liquid and gas. 

 

3ĉ
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Fig. 2 Non-dimensional G11 at (1,2) for Srlq=0.5 

 
 

 
Fig. 3 Non-dimensional G12 at (1,2) for Srlq=0.5 
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Fig. 4 Non-dimensional G13 at (1,2) for Srlq=0.5 

 
 

 
Fig. 5 Non-dimensional G31 at (1,2) for Srlq=0.5 
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Fig. 6 Non-dimensional G14 at (1,2) for Srlq=0.5 

 
 

 
Fig. 7 Non-dimensional G41 at (1,2) for Srlq=0.5 
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Fig. 8 Non-dimensional G33 at (1,2) for Srlq=0.5 

 
 

 
Fig. 9 Non-dimensional G34 at (1,2) for Srlq=0.5 
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Fig. 10 Non-dimensional G44 at (1,2) for Srlq=0.5 

 
Figures (2) to (10) all support the theory that second 

and third compressional waves are of diffusive wave kind 
and are strongly attenuated with high dissipative factors 
(table 2). With respect to the arrival times of the second 
and third compressional waves, T2 = 7.197 and T3 = 
330.291 respectively, the amplitude of these waves were 
attenuated so strongly that gave no tangible contribution to 
the magnitude of the components. It seems that the second 
compressional wave front is detected by G33, G44 and G34, 
but no significant contribution was given to G11 and G12. 
The highly dissipative nature of the third compressional 
wave results no contribution of this wave to the 
components of the fundamental solution of receiver point 
at (1,2). The wave front of the third compressional wave 
might be observed at receivers very close to the origin, but 
it is strongly attenuated from the origin and it contribution 
can be neglected at short distances from the origin. 

To compare the results of this study with the 3D-
fundamental solution of the same medium given in [39], 
G11 at the receiver point (1,2,3) is represented in Fig. (11). 
Same features of 2D-fundamental solution are observed in 
the 3D-one, like observation of the fast compressional and 
shear wave fronts. However, the general shape is different 
because of the dimension of the problem. The 2D-
fundamental solution is obtained for the line force in 
space, while the 3D-fundamental solution is obtained for 
the point force in space. In the 2D-fundamental solution 
the unit Heaviside force in the origin is extended over the 
third axis, hence the effects of infinite number of point 
forces along the third axis are integrated. This results in 
gradually increasing magnitude of displacement to the 
limiting value at longer times and higher magnitude of the 
total displacement of 2D-fundamental solution. 

[Fig. 11] 
Generally speaking, excellent agreement of analytically 

inversed solution and numerical Laplace inversion is seen. 
The agreement between analytically inversed solution and 
numerical inversion for displacement component of 
fundamental solution (Figs. 2, 3) justifies the simplifying 
assumption of neglecting shear wave attenuation. Figures 
(8) to (10) present the fact that the pressure solutions are 
not affected by the shear wave and pressure change due to 
line source of liquid or gas at origin reach to a steady state 
at longer times in the receiver point. 

6. Conclusion 

This paper presented the closed-form time domain 
fundamental solution for the 2D dynamic unsaturated 
poroelasticity. Based on the key fact of the Biot's theory, it 
was assumed that the fast compressional wave is true wave 
and its attenuation is practically negligible. In order to 
reduce the complexity of the convolution integrals in the 
displacement component of the transient fundamental 
solution, the attenuation of the shear wave was assumed 
negligible too. 

A set of numerical results was presented, which 
verifies the accuracy of the assumptions made for the 
analytically inversed transient fundamental solution and 
demonstrates some salient features of elastic waves 
propagating in unsaturated porous media. 

The presented transient fundamental solution enables 
the future development of an efficient time domain BEM 
in order to solve various wave propagation problems in 
linear unsaturated poroelastic media as well as hybrid 
FEM-BEM to solve non-linear unsaturated poroelastic 
media where the far field is formulated by the boundary 
elements and the near field by the non-linear finite 
elements. 
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