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Abstract

This paper presents an algorithm based on CSS for discrete problems with the focus on traveling salesman problem. The
CSSalgorithm, based on some principles from physics and mechanics, utilizes the governing Coulomb law from electrostatics
and Newtonian laws of mechanics. However, the CSSis more suitable for continuous problems compared to discrete problems.
In this paper, a local search method and nearest neighbor are added to CSSfor discrete problems with the focus on traveling
salesman problem (TSP). The proposed algorithm is used to solve the TSP, and a method is presented for the solution of the
single row facility layout problem (SRFLP). To show the efficiency of the new algorithm, the results are compared to those of
some benchmark problems reported in the recent literatures.

Keywords: Charged system search (CSS), Traveling salesman problem, Discrete problems, Single row facility layout problem.

1. Introduction
2. A Review of the Charged System Search

Traveling salesman problem (TSP) is an NP-hard  Algorithm
problem, where for a number of cities with spedifie
distance between them, a tour must be found suwaththie
salesman goes only once to each of these citiesedimahs
to the starting one [1], travelling a minimum dista.
Finding an exact solution to this problem is veayd) and
the exact solution may be obtained only for smiakd
problems. To obtain the solution of problems widinge
number of cities, it is preferable to use heuristic
algorithms. In recent years, many researchers have
proposed various methods to solve this problem][2-8

The CSS algorithm based on some principles from
physics and mechanics, utilize the governing Cobldawav
from electrostatics and Newtonian laws of mechafts

After the introduction, Section 2 presents an oesww
of the standard CSS algorithm. The modified CSS
algorithm for the solution of TSP is introducedSection
3. Experimental results for TSP are presented atiGe4.

The Charged system search (CSS) algorithm, proposed
by Kaveh and Talathari [9], is a meta-heuristicoalipm
for optimization problems. This algorithm takes its
inspiration from the physic laws governing a groof
charged particles, CPs. These charge particlesanees
of the electric fields, and each CP can exert steftrce
on other CPs. Using the Newtonian mechanic laws, th
movement of each CP due to the electric force aan b
determined. Some other applications of the CSS lman
found in Refs. [10-13]. The CSS algorithm is surmizext
in a systematic form as follows:

Stage 1. Initialization

The initial positions of the CPs are randomly
determined using a uniform source, and the initial
velocities of the particles are set to zero. A memis
utilized to save a number of best results. This orgnis

A Review of the single row facility layout problem
(SRFLP) is presented in Section 5. The modified CSS
algorithm for solving SRFLP is introduced in Senti6,

and experimental results for SRFLP are presented in
Section?. Finally, conclusion is provided in Sect&
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called the Charged Memory (CM).
Stage 2. Determination of electric forces and the

corresponding movements

e Force Determination. Each charged particle imposes
electric forces on the other CPs according to the
magnitude of its charge. The charge of the eacilsCP

_ fit(i) — fitworst ;
4 fitbest— fitworst )

Where fit () is the objective function value of thth
CP, fitbest and fitworst are the so far best and worst

International Journal of Civil Engineering, Vol. 12, No. 3, Transaction A: Civil Engineering, September 2014



fithess among all of the CPs, respectively.

In addition to electric charge, the magnitude of th
electric forces exerted on the CPs is dependedheim t
separation distance that is,

_ [1Xi =X I
hj = 8)
[[(Xi +X)/2= Xpeg | +€

Where X; and X; are the position of thih andjth
CPs, andr;; is the separation distance these CRg is

the position of the best current CP, adds a small
positive number to prevent singularity.

The probability of the attraction of tlith CP by thgth
CP is expressed as:

fit(i) — fitbest
P = fit(i) - fit(j)
0 = else

> rand, or, fit(j) > fit(i)

The electric resultant forc&g ;, acting on thgth can
be calculated by the following equation,

Fei=q Z[%rij W\’i"'iiz ENZ]Epji X = X5),
iz & fij

W =1w,=0<=r; <R (10)

w=0w, =1« T >R

j=12..N

e Movements Calculations. According to the
determined forces, each CP moves to its new pasitio
and attain velocity as:

F.
X new = rand;; [k, % @2 +rand, Ik, IV gq DE+X | g, (11)
]

X new™ Xj old
Vi new= J’n—eNAt 12 (12)

Whererand;; andrand;, are two random numbers that
uniformly distributed in the range (0, 1)k, is the

acceleration coefficientk, is the velocity coefficient, and

m; is the mass of particle that is considered equa;t.

The velocity coefficient controls the influence die
previous velocity of the particles. In other wordhjs
coefficient is related to the exploration abilitf the
algorithm. The acceleration coefficient affects tloece
acting on each CP, or it influences the exploitatidility
of the algorithm. An efficient optimization algdrin
should perform good exploration in early iteraticensd
good exploitation in last iterations. Thus, the miagle of
the k, and k, is set to 0.5 which are linearly increased

and decreased, respectively. Thuk, and k, are
expressed as:
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k, = O5(L+iter /iter, ), k, = O5(L—iter /iter, )  (13)

Whereiter is the current iteration number aner . is
the maximum number of iterations.

Stage 3. Boundaries Constraints Handling

For handling boundary constraints, a harmony search
based approach is used. According to method, arighla
of each solution X;) that violates its corresponding
boundary can be regenerated from CM as

* w.p.CMCR

» select a new value for variable from CM,
e w.p. (I-PAR) do nothing,

 w.p. PAR choose a neighboring value,

* w.p. (:-CMCR)

» select a new value randomly,

Where “w.p.” is the abbreviation of “with the
probability”, CMCR (the Charge Memory Considering
Rate) varying between 0 and 1 sets the rate ottsedea
value in the new vector from historic values stoire€M,
and (ECMCR) sets the rate of randomly choosing one
value from possible range of values. The valueP@AR)
sets the rate of doing nothing, and PAR sets the o&
choosing a value from neighboring the best CP féther
details, the reader may refer to Ref. [9].

Stage 4. Charged Memory (CM) Updating

If among all of the new CPs, there are better CERs
that have better objective function value than st
ones in the CM, these should be included in the @i
the worst ones in the CM are excluded from the CM.

Stage 5. Checking the Termination Criteria

Stages 2 and 3 are re-iterated until one of theifspe
terminating criteria is satisfied.

3. A Hybrid-Modified Charged System Search
Algorithm

3.1. Amodified charged system search algorithm

To introduce the modified charged system search
algorithm, in the following a paragraph is quotedni
[14]:

"One of the assumptions of meta-heuristics is that
time alters discretely. This means that all alierst in
space-time are performed when all agents haveectiagir
solutions. For example, in the CSS algorithm, witiea
calculations of the amount of forces are compldaedall
CPs, the new locations of agents are determined)é32).

In addition, CM updating is fulfilled after movingl
CPs to their new locations. All these conform tecdéte
time concept. In the optimization problems, thiki®wn
as an iteration. In other words, the modificatioh tioe
space-time for the multi-agent algorithms is often
performed when an iteration is completed and the ne
iteration is not started yet.

Here, this assumption is discarded for the CSS
algorithm and therefore a modified CSS is obtainedhe
modified CSS, time changes continuously and after
creating just one solution, all updating processes
performed. Using this version of CSS, the new jpmsibf
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each agent can affect on the moving process of
subsequent CPs while in the standard CSS unles
iteration is completed, the new gitions are not utilizec
Based on this inference, the modified CSS is deviat

- Stage 1: Initialization.

« This step is similar to the one provided previgi

The initial positions and velocities of CPs as was
the CM are initialized. A number assated to each CP
considered.

- Stage 2: Solution construction.

 Forces determination. The force vector for jth CP
is calculated by Eq. (7).

* New position creation. Each CP moves to the
position as defined in Eq. (11) and Eqg. (12). kbwdd be
noted that in order to determine the location afhe€P
using Eq. (11), the recent location of the previagents it
utilized instead of the previous ones leading ® tke o
the pervious information directly after their gestéwn.
After moving the CPto its new position, the objecti
function is evaluated.

- Stage 3: CM (sources) updating.

« If the new CP vector is better than the worst an
the CM, it is included in the CM.

- Stage 4: Terminating criterion conti

« Stages 2 and 3 are repeated ua terminating
criterion is satisfied."

3.2. Hybrid-modified charged system search algorithm for
solving TSP

Changes have been made to the CSS algorith
follows:

1. Both standard CSS and modified CSS, ir with
positions are generated randomly and bof these
solutions are stored in the CM (charge memory), tbt
improve the initial positions in the proposed aiton,
two series of solutions are generated, one of thibe
main solutions and the other series are storedMr It is
noteworthy that irthis proposed algorithm, the particles
the CM can attract other particle3hus, the maii
particles, unlike the two previous algorithms wh
particles are randomly generated, in this algorjthihe
particles are placed on the CM are generated by
(Nearest Neighbor) methods. NN starts with selectir
random number for the first city of a tc then for
selecting next city, the minimum distance in thevsoof
the previous city in distances matrix is found aetected
and this stagés repeated untiéll cities are chose The
proposed algorithm uses a modified NN so all possible
scenarios are evaluated by the NN and the bebkea are
selected.

2. In this method, as the modified CSS, time is
assumed to be discrete, and after each displacefor a

particle, CM update process is performed. Thusripact
of the particle on other particles by the new laraand
new charge will be applied.

3. Each time the particles are evaluated by
objective function, a local search method is use
geneate other solutions around this solution and ittédr
solution is found, the best solution is to repléwoe curren
solution. The method that has been used for thipqae,
is a combination of mutation operators that cautieed
in genetic algorims. The method used here is prese
in Fig. 1.

4. In most cases, termination condition of
previous algorithms is based the maximum numbe
iterations. In the proposed algorithm, this comditihas
been changed, and if at a stage no improveme
obsrved, after certain number of r-improving
iterations, the particles are reallocated. Then $hene
number of iterations is continued, and if still
improvement is achieved, then the algorithm s

5. At the end, when the algorithm is stopped, a
using the local search described in the previous @®(
the best solution is examined for improvement, vitih
difference that, at this stage all possible sohgidor
improvement are investigated and the local seas
carried out to a certain numberrforming replacement if
any better solution is found.

4. Experimental Resultsfor TSP

To show the efficiency of the proposed HMCSS-
algorithm, results are compared with-adaptive Net [15],
CONN [16], RABNETTSP [5], ELC-LR [17],
GA+GSTM [6], Chen & Chien[18], ASA-GS [19], and
CGAS [7] for benchmark problem from TSPLI[20];
each problem is run for 10 trials. Results of agerarrot
and best error from bektown solutions are presented
Tables 2 and 3. Theesults of average error are a
graphically shown in Figures 2 and 3. In additi
algorithms parameters are chosen such that the emai
CP's equal to 30, radius of CP's is one, stepdallacate
the CP's equal to 120 iwion and HS parametersMCR,

PAR, k, andk, are shows in Table

Table 1 The parameters of HMCSS+

Problem size
<60 6C-120  120-300 >300
CMCR 0.98 0.9¢ 1 1
PAR 0.1 0.2 0.1 0.1
k, 0.6 1 1 2
k. 0.5 0.5 0.5 0.5
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Tour: One solution for TSP.
dist: The objective function evaluation of Tour.
n: size of the problem.
According to the random (Rnd) number produced betw®-1)
if (Rnd<.2)
{
T=Tour,
I=a random city between solutions ¢ity
J=a random city between solutions city
I1<J;
According to the random (Rnd) number produced betw(0-1)
if (Rnd<.9)

Ts=T(J:-1:1); (selection a part of solution angarsion it)
}Else

Ts=T(I:J); (selection a part of solution)

}

Tt=T-Ts; (remove Ts from Tour)
for (counter=1:length(Tt)-1)
{

newTour= [Tt(1:counter),Ts, Tt(counter+1:nTt)jagert Ts into Tt)

newdist= the objective function evaluation of fi@ur,
if (newdist<dist)

{
dist=newdist
Tour=newTouy

}
}
if (n<=30)

{
Repeat this process 1 times
}Elseif (n>30 && n<=60)

{
Repeat this process 2 times
}Elseif (n>60 && n<=120)

{
Repeat this process 3 times
}Elseif (n>120 && n<=300)

{

Repeat this process 4 times
}Elseif (n>300)
{

}

Repeat this process 5 times

Fig. 1 Local search using a combination of mutation ojpesa
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Table 2 Comparison of the average error and best errodEHS+LS with Co-adaptive Net [15], CONN [16], RABNET-Tf&} and

ELC-LR [17]
T+ ADACPO'I'-IVE CONN RABNET- ELC-LR HMCSS+L S (CURRENT
@] (2007) TSP (2009) (2010) METHOD)
TEST T NET (2003)
PROBLEM % Ave Best Ave Best Ave Best Ave Best Ave Best Rankin Rankin
I'?'I Error  Error Error Error Error Error Error Error Error  Error Ave Best
(%) %) () () () () (%) (%) (%) (%) Error  Error
EIL51 51 2.89 0.94 2.85 - 2.69 0.23 0.94 - 0.47 0.00 1
BERLIN52 52 7.01 0.00 8.18 - 5.18 0.00 - - 0.01 0.01 1 2
KROA100 100 1.31 0.57 2.57 - 1.13 0.24 1.63 - 0.41 0.00 1
PR144 144 - - 2.34 - - - - - 0.31 0.00 1 1
CH150 150 3.23 1.78 5.50 - 3.22 1.13 0.61 - 0.66 0.38 2
KROA200 200 3.27 0.92 5.16 - 2.80 0.79 1.04 - 1.11 0.89 2
TS225 225 - - - - - - 8.84 - 1.19 0.25 1 1
LIN318 318 4.31 2.65 - - 3.97 1.92 0.32 - 2.25 1.84 1 1
PCB442 442 - - 5.72 - - - - - 2.30 1.83 1 1

Frequently rank 1 1

Table 3 Comparison of the average error of the HMCSS+LS, GBFM[6], Chen & Chien [18], ASA-GS [19], and CGAS [7]

H GA+GSTM CHEN&CHIEN ASA-GS CGAS HMCSS+L S (CURRENT
e} (2011) (2011) (2011) (2012) METHOD)
TEST n
PROBLEM % Ave Best Ave Best Ave Best Ave Best Ave Best Rank Rankin
)] Error Error  Error Error Error Error Error Error Error Error in Ave Best
m %) % (% %) () () (%) (%) (%) (%)  Error  Error
EIL51 51 - - 0.30 0.23 0.67 0.67 - - 0.47 0.00 2 1

BERLIN52 52 0.00 0.00 0.00 0.00 0.03 003 122 000 001 100 2

KROA100 100 1.18 0.00 0.42 000 001 001 073 0.00 041000 2 1
PR144 144 1.08 0.00 - - 0.01 0.00 - - 0.31 0.00 2 1
CH150 150 0.64 0.46 0.55 0.00 0.16 0.04 - - 0.66 0.38 4 3
KROA200 200 154 0.87 1.26 005 023 014 197 000 1.11890. 2 4
TS225 225 050 0.25 - - 0.00 0.00 - - 1.19 0.25 3 2
LIN318 318 3.31 0.98 - - 0.84 0.66 - - 2.25 1.84 3 3
PCB442 442 278 2.05 - - 0.96 0.56 - - 2.30 1.83 2 2
Frequently rank 2 1
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Fig. 3 Comparison oéverage error and best error of HMCSS+LS with GA+M[6], Chen & Chier{18], ASA-GS [19], and CGAS.

5. Introduction of Single Row Facility Layout
Problem

Single row facility layout problem (SRFLP) is an -
hard problem, where the solution must be foun
permutation of facilities on a line that minim the
weighted sum of the distances between all pair
facilities.

A set F=(1, 2. . n) of n > 2 facilities, the length |j
each facility gF, and weights ;¢ for each pair (i, j) o
facilities are given. (i, € F, i#j)

Objective is to find a permutation P =;,p,, . . . ,p) of
facilities in F to minimizes the cost of the peratidn:

368

@)= ) gy,

1sisjsnpipl.

Where dp,,. = 1p,/2 + Xick<jlp, +1,/2 is  the
distance between the centroids of faciliti; and p.

For many years, researchers haried to provide
better ways to solve this problem, which can besimared
as the first exact method to solve the SRFLP pregads
[21, 22] After them, other methods have been propc
such as those of Refs. [23}].
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6. Hybrid-Modified Charged System Search
Algorithm for Solving SRFLP

Changes that have been considered in developin
HMCSS algorithm for solving TSP are as follo

1. The results showed thatising NN to solve
SRFLP is not useful, so this part of the algoritifion
solving SRFLP was removed and algorithm initialgh
positions are generate randomly for solutions stamethe
CM.

2. Obviously, the objective function of tt
algorithm changes.

3. In the local search method, the number
repeating process is sets to 3.

7. Experimental Resultsfor SRFLP

In order to show the efficiency of the HMCSS+LS
solving SRFLP, results are compared to those of
benchmark problems; each problem being rir 100 trials.
Results are presented in Table 4 and Table 5; itdgw
parameters are chosen such that the number ob€&bsne
equal to 24, radius of CP's is one, step for reatothe CP'
is equal to 25 iteration and HS parameters, CMCAR |

k, and k, are shown in Table

Table4 The parameters of HMCSS+
CMCR 0.99

PAR 0.1

A 0.5
a

k. 0.5

Table 5 Comparison of the best cost of HMCSS+LS wi & E [26], DA&F [27], H & R[28] and K & G [24]

Instance Size (ggl%) ?2%?1'; H&R (2011) (';glg) HMCSS
Anj0s-60-05 60 318805.! 318805.0 318805.0 318805.! 318805.0
Anjos-70-05 70  4218230.  4218017.5 4218002.5 4218002. 4218002.5
Anjos-75-05 75 1791408. 1791408.0 1791469.0 1791408. 1791410.0
Anj0s-80-05 80 1589061. 1588901.0 1590847.0 1588885. 1588885.0

Table 6 Comparison of the best cost of HMCSS+L{ & L [23] and K & G[24]

Instance Size A&L (2012) K&G(2013) HMCSS
k0-64-05 64 5019225 501922.5  501922.5
sko-72-05 72 4283055 4282485 4282305
k0-81-05 81  1303756.0 1302833 1302733
sk0-100-05 100 10349225 1033338.5 1033422.

8. Conclusions

As was seen from the results of the previous ses|
the hybrid-modified CS&lgorithm in many cases, in bc
TSP and SRFLP, reached to satisfactory solul
compared to other algorithms. However, the (
algorithm is very sensitive to the initial paramstsuch a:
particle radius, harmony search parameters

coefficientsk, andk, . Thus, with further change of the

parameters, one expects to obtain better resuta fhis
algorithm.
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