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1. Introduction

In this competitive world, scarcity of the resources and need

for efficient structures make challenges for engineers to find

cost-effective and efficient solutions and designs. Skill,

intuition, and experience of the designers can directly affect

the designs. The design of complex and huge structures

requires data processing and a large number of calculations.

Computer-aided design optimization (CADO), however, has

been developed during the last decades. The engineering

design and optimization processes benefit vastly from the

revolution of calculation using computers. The optimization

methods, in the literature, are classified in two different

categories; optimality criteria (indirect) methods and search

(direct) methods. Optimality criteria are conditions that must

be satisfied by a function at its minimum point. Many

mathematical (or deterministic) methods and stochastic (or

probabilistic) methods are introduced, developed and applied

for the optimization of structures, in the literature.

Shape optimization can usually be implemented by varying

some typical shape parameters, such as nodal coordinates.

But, in topology optimization there are no obvious or simple

topological parameters within an optimization process. Some

of the variables that can be used to define topology are the

number of holes in a structure and the existence or inexistence

of material at any particular point in the design space.

Therefore, unlike the continuous variables treated in shape

problems, the design variables in topology optimization are

intrinsically discrete in nature and the problem is essentially a

discrete optimization problem of material distribution. This

kind of discrete problems are difficult because they require the

enumeration of large portions of the solution space, and

computational order can grow enormously with the number of

discrete variables to be resolved. 

A popular strategy is to initially discretize the allowable

design space into finite elements (FE) and define the required

loading and boundary conditions. The optimization procedure

will then be concerned with determining which elements

should contain material and which elements are void. Based

on this strategy, Bendsoe and Kikuchi [1] defined the problem

with a composite material represented by each element having

material plus a hole inside. The material properties of each
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element are then dependent on the size and orientation of the

void within the element according to a homogenization

relationship. A size optimization is then performed to optimize

the sizes and orientations of the voids of all the elements for a

given objective function. Elements with relatively large holes

will represent empty space while those with smaller holes

denote that material exists and hence form the structure.

An alternative but conceptually similar approach is to

directly use the material density of each element (instead of

holes) as the design variable. An empirical formula is then

applied to relate this density with the elastic modulus, without

the need for a homogenization formulation. The topology

designs produced by this material density approach [2] are

similar to those obtained with the homogenization method.

The Homogenization method is then developed by others.

Among them, Hassani and Hinton [3] developed this method

theoretically and practically to the structural topology

optimization, expanding the software to the method.

Both the homogenization and material density approaches

circumvent the difficulty of discrete optimization by using

continuous design variables, converting the problem into a

continuous optimization problem. However, since the

resulting elements can be of intermediate densities ranging

from complete holes to completely filled with material, some

interpretation by the designer is still needed to determine the

final topology and shape of the structure. It is uncertain if the

final useful design interpreted from the results is close to the

actual optimum point since the criteria for including/excluding

any particular element from the structure tends to be arbitrary

(for example, based on an arbitrary threshold density value).

There are many types of heuristic methods which have been

developed and applied to the engineering problems as well as

shape and topology optimization. Among them genetic

algorithms [4], ant colony optimization [5-6] and particle

swarm optimization [7] are the most famous. There are many

studies for optimization of structures using these heuristic

methods and results have been showed the robustness of the

method but each one has its own shortages [4-7].

For the first time, cellular automaton (CA) was presented by

von Neumann [8-9] and Ulam [10], and it has been considered

as a discrete simulation scheme in the last four decades. CA,

also, has been introduced for more realistic modeling of the

behavior of complex systems. Initially, this method was

introduced as Automata Networks for modeling of discrete

dynamic systems.

On the other hand, CA is known as a special case in which a

network graph is uniform and the cells are updated at the same

time [11]. In general, in this method, cells are considered as

similar square [12] or other shapes, and values of each cell in

a special time step is updated using local rules, regarding the

status of the cell and its neighbor cells in the previous time

step. Kita and Toyoda [12] presented a scheme for

optimization of structures by using the concept of a cellular

automaton (CA), dividing the design domain into small square

cells. To confirm its validity, Kita and Toyoda [12] applied the

proposed scheme to a two-dimensional elastic problem. Since

these rules are to introduce existing relationships between

adjacent and neighboring cells, it is not necessary to know the

general rules governing the issue. Thus, CA is a very suitable

method for problems where the accurate information of the

general relations is not available. 

CA has been used for simulating a variety of problems such

as fluid flow and transportation traffic; however, the main idea

of applying this method in structural shape optimization for

the first time was proposed by Inou et al. [13-14]. The basic

idea which is described by Inou et al. is to divide the design

domain into small cells and then to obtain von Mises

equivalent stress distribution in the cells using the finite

element method. Then the amount of stress in each cell is

updated using the values of stress in neighboring cells and

applying local rules. In this method, Young modulus is

considered as a design variable and it is modified in every

stage such that the stress of each cell becomes equal to the

amount of stress of the cell obtained in the stage. Thus by

eliminating cells with relatively small Young's modulus, the

goal of shape and geometry optimization of structures are

simultaneously implemented.

Local rule applied in these studies is nonlinear relationship

between the cell stresses, and the Young modulus has to be

considered. The numerical experience shows that there is no

reliable connection between the method and mathematical

optimization problem. Since the stresses in each cell are

updated individually during the optimization process, it is not

possible to apply suitable stress constraints.

On the other hand Xie et al. [15-16] introduced evolutionary

structural optimization (ESO). In this scheme, the first base

value is determined. After analysis using the finite element

method, cells with smaller stress than the base amount are

removed. In their recent studies, the ESO method of

evolutionary structural optimization has been generalized. In

this scheme two base values are introduced. Thus, while some

cells using the first criterion are removed, another group of

cells with regard to other criteria are added. However, the

physical concepts of these base quantities are not specified and

therefore they should be determined by previous numerical

results or previous research experiments. To overcome the

above problems, the following algorithm is presented and

used. First, the design domain area is divided into small

triangle cells and thickness of each cell is considered as a

design variable.

In the next step, the whole problem of structural optimization

is converted to optimization of each cell using CA constraint

condition. Formulation of this method does not involve

entering new parameters whose physical nature is not clear,

which is considered an advantage of using this method.

2. Cellular automata approach

Cellular Automata (CA) is a mathematical model for systems

in which many simple components for complex patterns can

work together. CA is made up of a regular network, where each

cell can take different amounts. The cells of CA at each step of

implementation are updated simultaneously using a local rule

in which the value of each cell is determined based on the

values of neighboring cells. CA could be divided into various

categories. For example, based on the dimension of network

criteria, Cellular Automata will be divided into one-

dimensional, two-dimensional, or multi-dimensional. Cellular
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Automata based on the amount of each cell is divided into two-

value Cellular Automata and multi-value.

Cellular Automata based on the network neighbors can be

divided into two categories, as CA with periodic boundary and

or non-periodic boundary. The most famous neighbors in the

two-dimensional Cellular Automata model are known as the

Moore neighborhood and Von Newman. In this paper, the

design domain is divided into triangles with three-node cells.

A variety of neighborhood can be considered for cells.

However, in this paper, only the cells that are in common ridge

are selected as neighbors, as illustrated in figure 1.

All of these cells are considered as independent components

through the finite element analysis and stress distribution in

each cell is determined. Usually, in the simulation process

using Cellular Automata, value of cells is considered as limited

and a finite amount. However, in this paper, these values are

considered as continuous quantities. The values of each cell in

each step are determined based on the status of the cell and its

neighbor cells in the previous step, using the appropriate local

rule. Figure 1 shows the neighbor cells of the triangular

elements. For the boundary cells or the cells located in the

sides, only the adjacent cells are considered as neighboring

cells.

CA is definitely a new comer to the field of structural

analysis and design. Nevertheless, a number of methods that

appear in the structural optimization literature have a basic

structure reminiscent of CA algorithms. These methods,

especially in the area of topology design, are reviewed in the

introduction to the paper by Kita and Toyoda [12]. The work

of Kita and Toyoda [12] is the starting point of this review.

CA has been considered as a discrete simulation scheme and

also, has been introduced for more realistic modeling of the

behavior of complex systems. The topology design objective

considered in [12] is to find the optimal thickness distribution

of a two-dimensional continuum (plate) under in-plane loads.

The basic methodology presented by Kita and Toyoda consists

of; 1- finite number of elements are identified as CA cells, 2-

the cell neighborhood is identified as the elements sharing a

common edge with the cell, for the rectangular FEM mesh

used, this is a Moore-neighborhood, and 3- an update rule is

devised, based on stresses in the neighborhood, to update the

cell thickness.

This work contained some far-reaching features. They

formulated the CA design rule, for the first time, as a local

optimization problem at the cell (element) level. They based

the local update rule on the value of stress resultants in the

neighborhood. Moreover, they provided an approximate

sensitivity analysis as the basis for selecting the cell (element)

level objective function. The main drawback of their method is

that they depended on the evolutionary structural optimization

(ESO) method developed by Xie and Steven [15]. In ESO, the

von Mises stress is used as a measure to eliminate elements in

the domain that are not contributing to the load carrying

capacity of the structure. This method is essentially heuristic

and was criticized for its lack of mathematical foundations and

premature convergence to suboptimal designs in a number of

publications [15-17]. Another disadvantage of this CA

algorithm is the large number of iterations (in excess of a

thousand) required to reach a converged topology.

3. Definition of the optimization problem

3.1. Introduction

It is generally accepted that the proper definition and

formulation of a problem takes roughly 50 percent of the total

efforts needed to solve it. Therefore, it is critical to follow

well defined procedures for formulating design optimization

problems. The importance of properly formulating a design

optimization problem must be stressed because the optimum

solution will only be as good as the formulation. For instance,

if we forget to include a critical constraint in the formulation,

the optimum solution will most likely violate it because

optimization methods tend to exploit deficiencies in design

models. Also, if we have too many constraints or if they are

inconsistent, they may not be a solution to the design

problem. 

Results reported by Arora in [18], show that the selection of

design variables greatly influences the problem formulation.

Once the problem is properly formulated, methods, schemes or

algorithms could be applied to solve it. A five step procedure

proposed in [18] to formulate design optimization problems,

which is applicable for most optimization problems;

Project/problem statement, Data and information collection,

Identification or definition of design variables, Identification

of objective function(s), Identification of constraints.

All optimization problems have at least one optimization

criterion that could be used to compare different designs and

determine an optimum solution. Most engineering design

problems must also satisfy certain equality or inequality (or

both) constraints. A standard form of the design optimization

model for single objective optimization problem (SOOP)

which complies with the literature is as follows:

Find an n-vector x=(x1, x2,...xn) of design variables to

minimize (maximize) a cost (profit) function

f(x)=f(x1, x2,...xn)                                                             (1)

subject to the p equality constraints

hj(x)=hj(x1, x2,...xn)=0;  j=1tol (2)

and the l inequality constraints

gi(x)=gi(x1, x2,...xn)O0;  i=1tol (3)

and also q upper and lower limits on the design variables
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Fig. 1. The triangular neighborhood
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xk
(L)δxkδxk

(U) ;  k = 1 to q (4)

A multi-objective optimization problem has a number of

objective functions which are to be minimized or maximized.

As in the single-objective optimization problem, here too the

problem usually has a number of constraints which any feasible

solution (including the optimum solution) must satisfy. In the

following, we state the multi-objective optimization problem

(MOOP) in its standard form as introduced in [18-19]:

Find an (or set of) n-vector x=(x1, x2,...xn) of design variables

to minimize (maximize) cost (profit) functions

F(x)=(f1(x1, x2,...xn),f2(x1, x2,...xn),...,fm(x1, x2,...xn); m=1toM (5)

subject to the p equality constraints

hj(x)=hj(x1, x2,...xn)=0;  j=1top (6)

and the l inequality constraints

gi(x)=gi(x1, x2,...xn)O0;  i=1tol                               (7)

and also q upper and lower limits on the design variables

xk
(L)OxkOxk

(U) ;  k = 1 to q      (8)

A solution x that does not satisfy all of the constraints and

bounds is called an infeasible solution. Vice-versa, if any

solution satisfies all constraints and variable bounds, it is

known as a feasible solution.

Multi-objective optimization is sometimes referred to as

vector optimization, because a vector of objectives, instead of

a single objective, is optimized. In the case of conflicting

objectives, usually the set of optimal solutions contains more

than one solution. In two-objective optimization problems the

solutions trade-off could be obtained; this is called Pareto-

optimal solution. In the presence of multiple Pareto-optimal

solutions, it is difficult to select one solution over the other

without any further information about the problem. If higher

level of information is satisfactorily available, this can be used

to make biased search. Therefore, in the light of the ideal

approach, it is important to find as many Pareto-optimal

solutions as possible in a problem. Thus, it can be assumed that

there are two goals in a multi-objective optimization: to find a

set of solutions as close as possible to the Pareto-optimal front,

and to find a set of solutions as diverse as possible.

3.2. Problem statement and data collection

The main purpose of this paper is to develop shape and

topology optimization of structures using the concept of

cellular automata. To analyze the structure using finite element

method, constant strain triangles routine is developed. The

objective of the optimization problem developed in this paper

is to minimize both the total weight of the structure and the

deviation between the yield stress of the materials and the von

Mises equivalent stress at the cell. In other words, the problem

has two objective functions, called bi-objective optimization

problem in the literature.

3.3. Design variables and constraints

Continuous variables are employed for thickness of the cells.

To formulate the optimization problem for each element

individually a special constraint condition, called CA-constraint

condition, is considered. This CA-constraint condition is

defined so as to minimize the variation of the equivalent stress

of the neighboring cells with respect to the variation of the

thickness of the updated cell. The CA-constraint conditions

defined in [12] for updating quadrangle elements neighborhood.

In this paper, however, it is redefined for triangular elements.

These conditions are explained as follows:

gi=(σ~ i/ σ
~ 0i )-1L σi -1=0 ,  (i=1, ...,3) (9)

where σi denotes the ratio of equivalent stresses at the

neighboring cell i at the present step to the preceding step.

Therefore, this equation ensures that the variation of the

equivalent stress at the neighboring cell is small.

3.4. Objective functions

The first objective function of this optimization problem is to

minimize the weight of the updated cells. Considering the

material and the area of the cells as invariant parameters, the

first objective function, which is an explicit function of the

design variables, can be defined as follows:

f1(x)=(xi/t0)2 (10)

where t0 is the initial thickness of the cell.

As implied in the previous part, the second objective function

is to minimize the deviation between the yield stress of the

material and the von Mises equivalent stress at the cells. This

aim is also expressed as follows:

f2(x)=(σ0-1)2 (11)

where σ0 is the ratio of the von Mises equivalent stress to the

yield stress of the material.

This objective function is an implicit function of the design

variables, so it is not possible to formulate the objective

function explicitly in terms of the design variables alone.

Instead, the intermediate variable, which is a type of stress

ratio, is used to formulate the function.

4. Our approach

This article intends to optimize both the objective functions

developed in the previous section. This problem is known as

multi-objective optimization problem. There are many

approaches available to solve multi-objective problems [20-

21]. The weighted sum method (WSM) is the simplest and the

most common approach to multi-objective optimization

problems and is probably the most widely used classical

approach [22]. This method, as the name suggests, scalars a set

of objective functions into one single objective using pre-

multiplying each objective with a user-defined weight. Faced

with multiple objectives, this method is the most convenient
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one that comes to mind. For example, if one is faced with the

two objectives of minimizing the total weight of a structure and

minimizing the maximum lateral deflection of each story of a

structure, one naturally thinks of minimizing a weighted sum of

these two objectives. Although the idea is simple, it introduces

a not-so-simple question. The values of the weights one must

use could be the question. Of course, there is no unique answer

to this question. The answer depends on the importance of each

objective in the context of the problem and a scaling factor,

which will be addressed in the following section.

The weight of an objective is usually chosen in proportion to

the objective's relative importance in the problem. For example,

in the above-mentioned two-objective minimization problem,

the total weight of the structure may be more important than the

maximum lateral deflection of the structure. Thus, the user can

set a higher weight for the weight than for the maximum drift.

Although there exist ways to quantify the weights from this

qualitative information as developed by Parmee et al. [23], the

weighted sum approach requires a precise value of the weight

for each objective. However, setting up an appropriate weight

vector also depends on the scaling of each objective function.

It is likely that different objectives take different orders of

magnitude. In the above example again, the total weight of the

structure may vary between 100 to 1000 tons, whereas the

maximum drift of the structure may vary between 10 to 100

mm. When such objectives are weighted to form a composite

objective function, it would be better to scale them

appropriately so that each has more or less the same order of

magnitude. For example, one may multiply the total weight by

10-3 and the maximum drift of the structure by 10-2 to make

them equally important. This process is called normalization

of objectives as introduced by Deb [19].

On the other hand, in order to make objective functions scalar

non-dimensional amounts, one may divide each objective

function by the initial value of them. For example, in the above

mentioned example one may divide the total weight of the

structure by the initial constant value for the weight (e.g. initial

assumed weight of the structure or initial weight obtained from

previous optimization scheme) and divide the maximum

lateral deflection of the structure by the initial constant value

for the lateral deflection (e.g. the allowable lateral deflection

permitted by codes). After the objectives are normalized, a

composite objective function f(x) can be formed by summing

up the weighted normalized objectives and the MOOP given in

equation (5) is then converted to a single-objective

optimization problem.

Using the weighted sum method and multiplying the penalty

parameter p into the CA-constraint condition and adding it to

the linear combination of the two objective functions, the

penalty function can be obtained as follows:

f(x)=w1(xi/t0)2+w2( σ0-1)2+p n (σi -1)2 (12)

here, w1 and w2 are defined so that the sum of them are equal

to one and  w2 could be obtain using the following conditions:

w2= (13)

To obtain the trade-offs between the two objective functions

in multi-objective problems, different amounts for the weight

parameters have to be considered. This diagram is obtained in

the following section, without consideration of the equation

(13). In this work, since simultaneously topology and shape

optimization is implemented, unlike topology optimization

which considers just existence or inexistence of the material,

shape and topological parameters are considered for design

variables. After defining the optimization problem, two-

dimensional stress and deformation analysis is employed to

analyze the solutions. These problems are of plane stress or

plain strain type. The finite element formulation for these types

of problems using three-node triangular elements is developed

in this particle. A three-node triangle in which the displacement

is represented as a linear function of the coordinates is called a

constant strain triangle (CST). An element of this type is

referred to as a CST element. The strain and therefore the stress

in these elements are constant. Once the element stiffness is

developed, the procedure for global stiffness, boundary

condition consideration, and the solution process follow the

steps developed by Chandrupatla [24]. The simplicity of the

CST element helps us in the development of steps involved in

the two-dimensional finite element formulation.

The problem studied in this work is a special case and it is

plane strain. Plane stress problems, including problems that

can be three dimensional mode and simpler two-dimensional

forms are considered [25]. Moreover, domain discretization

using three-node triangular elements has been conducted and

this is done to investigate studies on the effect of domain

discretization on the response of the problems. A new program

(subroutine) is developed for the state of the mentioned three-

node to perform finite element analysis. Plane eight-node

routine which is written in FORTRAN and published by

Zienkiewicz et al. [26] is reformed to prepare that subroutine

for three-node constant strain triangles. The procedure for

optimization is illustrated in figure 2.
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Fig. 2. The flowchart of the developed algorithm
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5. Examples

In this paper the developed algorithm is applied in three

examples to demonstrate the efficiency and accuracy of the

developed method. The considered examples reported in the

literature, so to compare the developed algorithm with valid

case studies and to discuss the differences between results

these examples are tested. The optimized shape and topology

of these case studies is obtained after repeating the

optimization process. To compare the obtained results with the

other publication, specification and initial assumptions 

of the following examples are similar to the article published

by Kita and Toyoda [12]. Results are compared with the

reported topologies using quadrangle CA and GA-based

models.

5.1. Example 1

Figure 3 shows the design domain, in meter, loading and

boundary conditions for this case study. In this instance, a

cantilever beam is considered and one point load P is applied

at the end of the beam in the mid side. The following design

parameters have been assumed during the analysis and the

design process. In this consideration, σ0 refers to the

maximum stress at the initial topology. At the initial step, the

thicknesses of all cells are considered as equal.

Design Parameters:

Number of cells 16G24G2

Penalty parameter 10

Young’s modulus E=200(MPa)

Poisson’s ratio v=0.2

Thicknesses of cells t0=1.0m
Force P=20.2(N)

Allowable stress σc=0.8Gσ0

There are a number of researches of the genetic 

algorithm (GA)-based approach to structural optimization in

the literature, among them works developed by Jakiela and

associated researchers [27-31]. Further details and 

example problems can be found in these references and the

related thesis of Chapman [32] and Duda [33]. Using an

evolutionary, survival-of-the-fittest optimization mechanism

[34-35], the GA allows designs in a population to 

compete against one another to serve as parent designs. The

example 1 is similar to the case which is investigated in [36].

The results of this work are compared to those reported in

[12, 36].

Figure 4(a) displays the optimized distribution of cell

thickness, after 100 and 400 iterations obtained using the

mentioned scheme in this paper. On the other hand, figure

4(b) represents the profiles at the same iteration as reported by

Kita and Toyoda [12]. Figure 4(c), also shows the results

reported by Jakiela et al. [36] which achieved using GA. The

homogenization-based solution, using a rectangular hole

microstructure [37], is also demonstrated in Figure 4(d).It

should be notice that both results are obtained using the same

184 E. Sanaei, M. Babaei

Fig. 3. Design domain and loading of example 1 Fig. 4. Thickness distribution of topology optimization of cells

(d) The homogenization-based solution reported in [32]

(b): The profiles at the same iterations reported in [8] 

(c): The GA-based solution reported in [32]

(a): The optimized domain after 100 and 400 iteration
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material size, properties, and the same loading condition. But

the FM solver employed quadrilateral elements, while in this

work FM solver utilizes triangular elements. The GA-based

solution contains 3% less material than Rodriques’s

homogenization-based solution. The main advantages of a

GA-based solution are that it performs a global search and

readily allows a variety of fitness functions and constraints.

The GA-based solution, however, required 10-100 times the

number of function evaluations as would be required by a

homogenization-based solution [36]. While, the developed

CA-based approach requires not a number of generations but

one solution and requires only about 400 iterations to achieve

the optimum solution. 

CA-based solution as reported in [12], after 1500 iterations

obtained the optimum solution which is comparable with the

solution obtained in this work after 400 iterations. Although

the final solution in this work has not the accuracy as the

profile obtained using Homogenization method reported in

[36], but there is a great timesaving behavior in the developed

CA-based algorithm. For instance, in this example

optimization using GA requires 600 generations with

population size 30, as stated in [36]. So, in this case it needs

to evaluate the solutions 18000 times. But using the triangle

CA-based algorithm a reasonable and near to global optima

solution has been obtained after about 400 iterations, and just

400 function evaluations would be required during the

optimization process. The reason for this advantage is the

shape of the element, which is triangle FM, and the updating

rule which vary the thickness of the small triangle cells

immediately in any iteration. Since the number of triangle

cells is twice the number of quadrangle cells, so the updating

rule may affect the result to achieve the optimum solution

sooner. These results show the validity, accuracy, and

efficiency of the scheme developed in this paper. 

5.2. Example 2

In this case study the design domain and the boundary

conditions are similar to the previous case study, while the

load condition is as illustrated in figure 5. Design parameters

are considered similar to the previous case study. The

optimized distribution of cell thickness after 100 and 400

iterations are illustrated in figure 6(a).

Figure 6(b) displays the obtained topology at the same

iteration reported by Kita and Toyoda [12]. In this case study,

also, the topology was obtained using the scheme developed in

this paper, showing the accuracy and efficiency of the

execution process.

5.3. Example 3

In this case study, two concentrated point loads are applied

on the cantilever beam, with similar assumptions to the

previous case studies, as shown in figure 7. The design domain

and parameters of this case are also considered the same as the

previous case studies. Figure 8(a) shows the thickness

distribution of topology optimization of cells after 100 and 400

iterations. The topology at the same iterations are not reported

by Kita and Toyoda, however, they have reported the thickness

distribution at final profile after 1500 iteration, as

demonstrated in figure 8(b).

Regarding the number of iterations, the results of the

thickness distribution which is obtained after 400 iterations

International Journal of Civil Engineering, Vol. 10, No. 3, September 2012 185

Fig. 5. Design domain and loading of example 2

Fig. 6. Thickness distribution of topology optimization of cells

(b): The profiles at the same iterations reported in [8]

(a): The optimized domain after 100 and 400 iteration

Fig. 7. Design domain and loading of example 2
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using the developed scheme of this paper, appear acceptable.

Hence, based on the results of these three case studies and

comparing the thickness distributions after some iteration with

those reported in the literature, it can be proposed that the

method developed in this paper is accurate and valid to apply

to other structures. As a future research study, one can apply

this scheme to large structure (e.g. tall buildings, dams, etc.) or

large water networks.

Employing different value for the weight parameters in the

objective function defined in equation (12), Pareto front of the

two main objective functions could be obtain. The trade-offs

between the ratio of thicknesses to the initial thickness and the

ratio of the von Mises equivalent stress to the yield stress of

the material are theoretically demonstrated in figures 9 for the

case study 3. The obtained Pareto-front shows that by

increasing the thickness of the cells the ratio of the stresses

tends to decrease, while decreasing the thicknesses leads to

increase the stress ratio. In the other word, when in

optimization process the algorithm tends to decrease too much

the thicknesses to optimize the weight, the stress ratio

increases rapidly and passes the allowable stress constraint.

So, in the real procedure, two objectives are converted to a

single objective function to form a penalized objective

function. When the stress ratio is equal to 1 it means that every

element has the maximum stress, so the optimum thickness is

achieved, which is about 0.33 and it can be seen in figure 9.

Since the weight of the structure is a proportion of the 

cells thickness, so the optimum weight of the structure is

reached.

6. Discussion

An improved topology and shape optimization technique

based on the concept of cellular automata is proposed for two-

dimensional structures. This research studies particular cases

for local rule known as the CA-constraint condition. The

method is applied for topology and shape optimization of two-

dimensional elastic structures and the design domain is

divided into small triangles in order to perform finite elements

analysis, which is developed using FORTRAN. The optimized

structures illustrated in this article are obtained using finite

element analysis considering a novel triangle neighborhood

while square cells for design domain has been considered in

the literature. Quadrangle cells are divided into two triangles.

Numerical case studies indicate the efficiency and accuracy of

solutions obtained for optimized topology and shape of the

structures. In the other words, the developed scheme in this

paper is fast. Optimum shape and topology obtained for the

above examples under different loadings, compared with

profiles reported in the literature, are more accurate in less

186 E. Sanaei, M. Babaei

Fig. 8. Thickness distribution of topology optimization of cells

(b): The profiles at the 1500th iteration reported in [8]

(a): The optimized domain after 100 and 400 iteration

Fig. 8. Thickness distribution of topology optimization of cells
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iteration.

The important features of the algorithm in obtaining better

results are: 1- the quadrangle cells are divided into two triangle

elements. So, the number of cells is increased, and it will affect

the results at the final step. In the other word, in the 

updating process, cells are affected by smaller neighbors; 2- a

novel neighborhood for cells, which is triangle elements, is

proposed and applied in the case studies; 3- the nature and

characteristic of triangle elements in FEM analysis, 

comparing quadrangular elements, affects the analysis

process; 4- Cells with small thickness have not been deleted

during the optimization procedure, because simultaneous

shape and topology optimization of the structures are

investigated,.

Since, CA meshes the design domain and then updates the

cell thicknesses in any iteration using a particular rule; this

technique is suitable for continuum structures. While, heuristic

methods such as GA, assign the thickness for the cells

randomly and evaluate the solutions and then based on the

fitness of each solution decide to increase/decrease the

thickness of the cells. So, based on the obtained results which

compared with the literature reports, the developed CA

approach, based on the proposed meshing of the design

domain, is suitable for continuum structures.
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