
1. Introduction

The design task in structural engineering

field is an iterative process in which the cycle

of "Design Y Analysis Y Control Y

Design" is repeated until in the Control stage

all design requirements are met. Since the

seismic loading is not constant and changes

due to variation in natural frequencies of the

structure, the design of structures under

earthquake loading is highly nonlinear and

more iterative and complicated than the

design under constant loading.

The process of obtaining optimal design may

additionally increase the number of design

cycles because it tends to reduce the cost

besides satisfaction of design requirements

especially if it is not associated with a proper

optimization algorithm. This process

becomes more complicated and more

iterative for optimal design of structures

under variable seismic loading. However, if a

proper optimization algorithm is

incorporated within the design cycle, the

design process may be guided automatically

towards an optimum design with less

computational effort. The preference of any

optimization algorithm compared to others

lies on its efficiency in reducing the number

of design and optimization iterations.

Numerous research works concerning

optimal design of structures have been

reported in the literature; however, the

optimal design of structures under seismic
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loading constitutes a small part. In fact it can

be claimed that the design optimization of

structures under dynamic/seismic loading is

in its infancy stage.

In a review by Cheng [1], most of research

works and reports published in journals and

world conferences on earthquake engineering

up to 1985, has been cited. The review

categorizes the papers based on nature of

structures, materials, objective functions,

optimization methods and deterministic or

non-deterministic in response and resistance.

It also includes the research done by the

author and his co-workers on optimal design

of structures under seismic loading.

Kramer and Grierson in a later research [2],

tried to minimize the weight of structure

under dynamic loads. They used a Gradient

Projection algorithm for the optimization

engine and solved problems of combined

static and dynamic loadings. McGee and

Phan [3,4] proposed Adaptable Optimality

Criterion technique for optimal design of

structures under frequency constraints.

Allowing for the tune up of the step size

parameter, and using an extrapolation

scheme, they reported good convergence in

Optimality Criteria method. Memari and

Madhkhan [5] used the Feasible Direction

method for optimal design of steel frames

subject to combined gravity and seismic

loads. 

More recently, Papadrakakis et. al. [6]

proposed the use of Evolution Strategies in

the optimum design of structures under

seismic loading. They used response

spectrum modal analysis to evaluate the

seismic loading. To this end, they created six

artificial accelograms. Then they used

Evolution Strategy (ES) for obtaining the

optimal design of structures. Evolution

Strategies are those algorithms that similar to

Genetic Algorithm (GA), do not need

gradient information; their major difference

with GA is that they use real vectors instead

of bit-strings. For the optimal design of a six-

storey space frame the authors performed

about 160 finite element analysis. 

Although most of researchers aim to find an

applicable design optimization method,

which can be used in practical design of

structures that involve in numerous design

variables and constraints, there has been

limited success. To the knowledge of the

authors, there are a few commercial software

packages that are concerned with optimal

design of structures under static loadings; but

there is not any software that does

optimization under dynamic/seismic loading.

The goal of this research work is to propose

a methodology that can be used for optimal

design of structures of practical size, under

seismic loading. To that end, the common

design procedure that is usually done in the

consulting design offices is followed. The

Kuhn-Tucker based Optimality Criteria

method, that has very small dependence to

the number of design variables, has been

selected as the optimization engine. The

drawbacks of the OC method have been

remedied and it has been shown that the

algorithm is capable of finding optimal

design of practical size structures under

seismic loading in a few iterations.

2.General Formulation of the Design

Problem

The automated design of seismic resistant

steel frames may be mathematically

formulated in the form of a standard

optimization problem that consists of an

objective function and a set of constraints.

Among various options for the objective

function (e.g. weight, cost, natural frequency,

etc.), in this paper the objective function is
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the weight of structure and is given by

equation (1).

(1)

Where r is the specific weight of steel, Ai
and Li are cross-section area and length of

element i respectively. The constraint set

comprises all design limitations that are

provided by design codes of practice. Here in

this paper, AISC-ASD specifications are

used. The constraints include limits on

stresses, deflections, side-sways, inter-storey

drifts, and upper and lower bounds on

member sizes; they are explained in the

following sub-sections.

2.1. Stress Limits

Among many design requirements for

beams, Eqs.(2 & 3), that give upper bound

stresses due to bending and shear, have been

used. Lateral torsional buckling of beams,

minimum lateral support spacing, crippling

and vertical buckling of webs, etc., can also

be included as additional constraints;

however, they have been neglected in this

study.

(2)

(3)

In these equations M is bending moment, S is

section modulus, fb and Fb are existing and

allowable bending stresses. V is shear force;

As is the shear area; fv is shear stress and Fv
is allowable shear stress. 

Eqs.(4 & 5) are used for combined bending

and axial stress constraints in columns while

Eq.(3) is also used for shear stress

constraints.

(4)

(5)

In these equations fa is the axial stress; Fa is

the allowable axial stress and it is calculated

based on slenderness of column (KL/r), from

Eqs.(6). FBe is the Euler buckling stress and

is given by Eq.(7). Cm is a parameter that

depends on the values and sign of moments

and direction of curvatures of the two ends of

the column. 

(6-a)

(6-b)

(7)

2.2. Deflection Limits 

There are three types of deflection limits in

member and structure levels. These limits

include deflection of beams, side sway limit

at the roof and inter-storey drift. They are

restored by using Eqs.(8-10) as design

constraints respectively.
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m = beam numbers (8)

(9)

(10)

2.3. Size Limits

Minimum and maximum sizes for structural

members are usually imposed to design

optimization problem to prevent vanishing

and oversizing of the members. These limits

may also be imposed to restore some design

code provisions. For example a lower

bound=200 on slenderness of compressive

members restrict the minimum size of

corresponding member to a minimum value

related to its length. The size limits are often

treated as side constraints and are satisfied

separately during optimization process.

These limits are given by Eq.(11).

(11)

2.4. Optimization Problem

Having all design constraints introduced, it

remains to integrate them in the form of a

standard optimization problem. Using the

standard notation xi for design variables the

optimal design of seismic resistant frames

can be expressed in the following form.

Minimize                                            (12-a)

S.T.                                                    (12-b)

(12-c) 

In which the objective function, (12-a), is in

fact given by Eq.(1); the set of constraints

(12-b) are given by Eqs.(2 - 5 and 8 - 10) and

the size limits, (12-c) are those in Eq.(11).

Solution of design problem of Eqs.(12),

requires completion of two prior tasks i.e.

determination of internal forces in members

due to combined gravity and seismic loading

and identification of potentially active

constraints and their explicit expression in

terms of design variables. These tasks are

explained in detail in the next sections.

3. Seismic Analysis

To determine the internal forces in structural

members due to seismic loading, there are

three different strategies [8]. The most

accurate way is to perform nonlinear

dynamic analysis subject to pre-assumed

ground acceleration time-history(ies).

Another method is to do a response spectrum

analysis. In this method the first few modes

of free vibration and corresponding

frequencies are obtained via a linear dynamic

analysis. Then using a design spectrum,

given by the building / seismic code, lateral

loads corresponding to the first few modes of

free vibration are obtained at each floor level.

Finally the seismic loading on the structure is

obtained using Square Root of Sum of

Squares (SRSS) or Complete Quadratic

Combination (CQC) method [7]. A more

simple way is to calculate the seismic forces

via the so called "Equivalent Static Loading"

method. In this method the seismic loading is

calculated based on the period of first mode

of free vibration of the structure only. In the

latter method, which has been selected for the

present research work, the earthquake effect

is obtained from Eq.(13). It is given as shear

force at the base of structure by some

percentage of the total gravity loads on the

structure [9,10].

The parameter C is usually defined by the
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building code provisions. Without affecting

the generality of the problem formulation, in

this paper the "Iranian Code of Practice for

Seismic Resistant Design of Buildings" [9],

which is similar to UBC97 [10] code of

practice, has been considered as the design

code. The parameter C is defined by Eq.(14).

(14)

For a given structure, the parameters A, I and

R possess constant values and are defined as

follows. A= The basic design acceleration. I
= A parameter related to the importance of

the structure. R= Reduction factor; a

parameter related to the structural system.

The parameter B is calculated from Eq.(15).

(15)

In this equation T0 is the governing period of

the soil where the structure is to be built. T is

the period of the first mode of free vibration

of structure. In this way parameter B relates

the seismic loading to the structure's dynamic

characteristics. During the optimization

process, as the properties of structural

members change, the value of T is changed;

therefore, the effect of earthquake on the

structure varies accordingly. 

After evaluation of V in Eq.(13), it has to be

distributed in horizontal and vertical

directions. The distribution of seismic

loading in vertical direction, which depends

on the geometry of the structure only, is

obtained from Eq.(16). Fk gives the

corresponding lateral force at floor k.

(16)

In this equation, Wi and hi are the weight and

height of kth floor respectively. Ft is the extra

seismic force at the roof level. The

distribution of seismic loadings in horizontal

direction however, depends on the

distribution of structure's stiffness in the

frames parallel to the direction of earthquake.

If the floors of structure in a 3-D analysis are

assumed to be rigid, the seismic loading at

each floor may be applied to its centre of

mass. In this paper, since two-dimensional

frames are considered, there is no horizontal

distribution of seismic loading.

4. Explicit Design Constraints 

The constraint set of Eqs.(12-b) has implicit

relation with design variables. To solve the

optimization problem of Eqs.(12) they have

to be expressed explicitly in terms of design

variables. This may be done by using Taylor

series expansion. Since the calculation of

higher order derivatives requires much

computational effort, a truncated first order

Taylor series expansion is often used. The

first order approximation of constraints

require gradient calculations i.e. sensitivity

analysis [11,12]. 

4.1. Sensitivity Analysis

4.1.1. Displacement Sensitivity Analysis

In the stiffness method of analysis

calculation of displacements of free nodes is

the basis for calculation of the internal forces

in members. Therefore the gradient of

displacement vector is derived first. The

basic equation of equilibrium in the stiffness

method of analysis is given by Eq.(17).

(17)

Where K is the overall stiffness matrix of the

structure, D is the displacement vector and P

is the loading vector. Differentiating Eq.(17)
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with respect to any generic design variable,

Xi , rearranging and solving the equation for

jD/jXi results in Eq.(18).

(18)

Here in this study, the cross sectional areas of

members are taken as design variables X .

However, an exponential relation of the type

I=aAb is used to link the moment of inertia

I, of any member to its cross sectional area A.

Parameters a and b are obtained via a curve

fitting process for the ruled sections. The

same procedure may be followed to obtain

the relation between section modulus S and

cross section area A. Figure (1) shows the

relationship of I and S versus A for European

INP (I Normal Profile) sections. Some other

linking schemes may also be found in the

literature [13].

4.1.2 Sensitivity of Seismic loading

The major difference between optimal design

of structures under gravity loading and

seismic loading is in the  jP/jXi term. In the

design optimization of steel frames under

gravity loading, this term is often neglected

[13] because, due to a DXi , except a very

small change in the self-weight of the

structure, no change occurs in the gravity

loading vector. However, in the optimal

design of structures under seismic loading

the change in load vector is the change in

seismic loading, jV/jXi and is not

negligible. It is related to change in the first

natural period of the structure and can be

derived from Eqs.(13-15).

(19)

It has been shown [11,14] that provided that

the mode shape f is normalized with respect

to mass matrix, M, such that fTMf=1, the

partial derivative jT/jXi can be obtained

using Eq.(20). 

(20)

Back substitution for jT/jXi in Eq.(19)

gives the sensitivity of seismic loading.

Moreover, substituting for jP/jXi = jV/jXi
in Eq.(18) completes the sensitivity

calculation of displacement vector to change

in any design variable.

4.1.3. Stress Sensitivity Analysis

The internal forces in any structural member

kl (standing between joint k and l) can be

obtained from the following equation:

(21)

in which the notations fkl , klkk , kkl stand for

vector of internal forces of member kl at k
end, stiffness matrix at k-end, and l-end in

local coordinates respectively. Rkl is the

rotation matrix relating global coordinates to

local coordinates of member kl. Dk and Dl
are displacement vectors of k and l ends in

global coordinates. Taking derivative of both

sides with respect to design variable Xi gives

a general formula for the sensitivity of

internal forces to change in design variables

[15].

(22)

To determine the sensitivity of any stress

component to change in design variables, it is

noted that stress components in structural

members, not only are sensitive to the

corresponding internal forces, but also are
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sensitive to physical and geometrical

properties of cross sections. Therefore, the

sensitivities of stresses due to axial force,

bending moment and shear force are derived

as follows:

(23)

(24)

(25)

Since the allowable axial stress Fa depends

on cross sectional properties of individual

members, its value will change if the size of

corresponding member is changed. Equation

(26) gives the corresponding sensitivity

formula.

(26)

The sensitivity analysis from the above

equation requires much computational effort.

Therefore, in this study a finite difference

calculation , which requires less

computational effort, has been employed.

The corresponding formula is as follows:

(27)

4.2. Design Constraints in Explicit Form 

In the preceding sections the sensitivity

analysis of displacements and stresses were

outlined. Now, the constraint equations (2-5

and 8-10) can be easily expressed explicitly

in terms of design variables:

(28)

(29) 

(30)

(31)

(32)

(33)

(34)

5. Optimization Procedure

Having the design optimization problem of

Eqs.(12) explicitly expressed in terms of

design variables (Eqs.(28-34)); any gradient

base optimization algorithm can be used to
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solve it. In this study the Kuhn-Tucker based

Optimality Criteria method which has been

developed by Venkayya [16] has been

modified and used.

5.1. Optimality Criteria (OC) method

Equation (35) is one of the basic Kuhn-

Tucker conditions for the optimality of any

point in the design space [17]. It states that, at

the optimum, the negative of gradient of

objective function is a linear positive

combination of gradients of the active set of

constraints.

;i=1,...,n  (35)

Dividing Eq.(35) to jZ/jXi , rearranging it

to a normalized form, multiplying both sides

to XB and taking its gth root and applying a

first order binomial expansion results the

following linear recursive relation [15] 

i=1,...,m1 (36)

in which m1 is the number of active

constraints. g is a step-size parameter that

controls the convergence of recursive

process. The parameter n indicates

successive iterations (n=0 corresponds to the

initial design stage). 

Equation (36) is the basic formula for

updating the values of design variables in OC

method. The independence of updating

formula (36) to the number of design

variables has made the OC method quite

powerful and efficient.

5.2. Evaluation of Lagrange multipliers

To apply Eq.(36) for finding the new values

of design variables Xin+1 the current values

of Lagrange multipliers ljn must first be

determined. To find l values, consider the

change  Dgk in the kth constraint due to

changes DXi in the design variables, in the

(n+1)th iteration: 

(37)

To have the design remain feasible, and

constraints not violated, we have to have:

gk(Xin+DXi) O0   Arranging Eq.(37) for

gk(Xin+DXi) and preserving the feasibility

of the design, results in Eq.(38).

(38)

Noting from Eq.(36) that:

i= 1, 2, . . . ,n (39)

and substituting for DXi in Eq.(38) and

rearranging, reduces to the inequality of (40).

(40)

This inequality may be reproduced for all

potentially active constraints. Then we will

have a set of inequalities (41), in which Qkj
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and Rk are defined in Eq.(40) as the

multipliers of lj's and the right side of

inequalities respectively.

(41)  

The set of inequalities (41) establish a sub-

problem for calculation of Lagrange

multipliers l, in space of dual variables in

which any dual constraint zk is defined in

Eq.(40). This dual sub-problem, in its

inequality form, has been incorporated in the

Optimality Criteria method for the first time

in this paper, and will be solved in a special

manner. 

Since the number of inequality constrains in

the dual sub-problem is the same as the

number of dual variables (i.e. Lagrange

multipliers), the coefficient matrix Q is a

square matrix. This property has led many

researchers [12,15,16] to suggest the solution

of this inequality in its equality form (42).

(42)

This means that they have initially assumed

that all selected constraints in main (primal)

problem become active at X+DX . However,

since it is not known a priori that which

constraint is definitely active and which one

is not, the solution of Eq.(42) gives incorrect

results (negative values) for some of dual

variables, l. To approach the correct results,

two strategies have been used in the

literature.

5.2.1. Adaptive Gauss-Seidel method

Gauss-Seidel method is one of iterative

algorithms for solution of simultaneous

linear equations. In this method some initial

values are assigned to the unknowns ( li0).

Then they are updated using Eq.(43) in the

successive calculations.

(43)

The adaptive version of this algorithm uses

the same updating equation (43), except that

it checks for the non-negativity of results. If

any unknown lj assumes a negative value, a

zero value will be assigned for it, otherwise,

its value will be used for calculation of next

unknown lj+1 . This process is continued

until a convergence criterion is met for the

values of unknown l's. Since this procedure

results in non-negative l's, it is thought that

the results are correct. However, as it will be

shown in section 5.2.5, results of Adaptive

Gauss-Seidel method are sensitive to the

order of equations. Thus it does not give the

unique and correct solution.

5.2.2 Method of Sequential Reduced Linear

Equations

Some researchers [1] have employed the

method of Sequential Reduced Linear

Equations (SRLE). In this method, for

solution of linear equations (42), any closed

form solution procedure such as Gauss

elimination, Choleskey decomposition, etc.

is used. Then the results are checked for non-

negativity. If some of Lagrange multipliers

assume negative values, zero values are

attributed to them and corresponding rows

and columns are eliminated from the set of

equations. This reduces the size of

simultaneous linear equations. Solution

process continues with reduced linear

equations until there is no negative result for

l's. 

Despite robust appearance of this method, it

can be shown that this method also results in

false results. The reasons will be discussed in

the next sub-section.
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5.2.3. Drawbacks of Previous Solution

Schemes

Two main reasons may be cited for false

results of methods in 5.2.1. and 5.2.2. The

first reason is that in the dual sub-problem, a

set of equalities, instead of inequalities, is

solved for Lagrange multipliers. This means

that all selected constraints in main (primal)

problem are assumed to be active while we

know that some of them may be inactive. The

error arises from the fact that some

inequalities are forced to be equality. This, of

course, may lead to false results. The second

reason lies on the fact that to find non-

negative Lagrange multipliers, the Eq.(42)

should be solved as a whole, because value of

any unknown affects values of other

unknowns. 

In the Adaptive Gauss-Seidel method, any

zero which is incorrectly assigned to an

unknown, will produce wrong results for the

rest of unknowns. Since during an iterative

process, unknowns are computed one by one

and there is no way to correct the error, the

final results are not reliable. 

In (SRLE) method the same error is

encountered. When the set of equations is

solved, some Lagrange multipliers get

negative values while they should assume

zero values. As was mentioned earlier, the

values of other Lagrange multipliers get

affected with these negative values and the

reduced set of linear equations may lose

some necessary equations. An example in

section 5.2.5 will show these deficiencies in

more detail.

5.2.4. Proposed Solution Procedure

The strategic point in the proposed method is

that the Lagrange multipliers are determined

such that they satisfy the inequality set of

dual sub-problem (41), instead of Eq.(42). A

phase-one Linear Programming algorithm is

usually used for solution of inequality sets.

However there are some relations between

dual variables l and dual constraints z (Eq.

(40)) that should be satisfied, but Linear

Programming algorithm cannot satisfy them.

These relations are called "Complementary

Conditions" and arise from complementary

conditions in primal optimization problem.

The complementary condition for the jth
constraint in the primal problem is defined as

gj(X)lj=0 . It implies that either constraint j
is active (gj(X)=0) and corresponding

Lagrange multiplier is non-zero, or lj =0
and the corresponding constraint is inactive

(gj(X)<0). Since there is a direct

correspondence between primal and dual

constraints, any constraint in the dual sub-

problem (41) follows the same status as in its

primal counterpart, i.e.

(44)

From the relationship between primal and

dual constraints it can be concluded that the

complementary conditions in primal

optimization problem dominates the dual

sub-problem in the form of Eq.(45).

(45)

Equation (45) describes a relation between

constraints and variables of dual sub-

problem. This relationship can not be

considered in solution procedure of phase-

one Linear Programming algorithm.

Therefore an especial algorithm is required to

implement solution of dual sub-problem (41)

and satisfaction of complementary conditions

(45) simultaneously. To that end, it is noticed
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that for arbitrary values of the dual variables

l>0 that satisfy the inequality constraints of

sub-problem z>0, the value of z.l is always

positive. Therefore if we sum up zj.lj for all

constraints, a positive function will be

established that we know a priory that it’s

minimum for correct values of l's is equal to

zero. In this paper this function (S zj.lj) has

been taken as the objective function of the

dual sub-problem. This completes the

establishment of dual sub-problem in the

form of a standard Quadratic Programming

(QP) problem as follows:

(46)

From the solution of the above sub-problem

unique values of Lagrange multipliers are

obtained. The proposed method remedies

both deficiencies of previous algorithms. The

first drawback will be remedied because all

inequalities are treated at their original form,

i.e. the probability of inactiveness of the

constraints is considered. The second

drawback may also be eliminated because in

the Quadratic-programming algorithm, all

constraints are considered simultaneously

and the results satisfy all constraints and non-

negativity of variables. The complementary

conditions are also automatically considered

and satisfied in the objective function.

5.2.5. Comparison of Solution Schemes

Suppose that in the solution of an

optimization problem via Optimality

Criteria, a dual sub-problem like the set of

inequalities in (47) is established. In this

section, the three solution schemes will be

used to solve the sub-problem (47) and the

results will be compared.

(47)

5.2.5.1. Solution via Adaptive Gauss-Seidel

method

In this method, at the first step, the inequality

sign in (47) is changed to equality sign. Then

Eq.(43) is used to calculate and update the

values of l's. Starting with zero values for

l's, the results for the first iteration are

obtained as follows:

l1=11      l2= - 5.25  Y0      

l3=2.9       l4= - 2.3  Y0

The arrow sign shows that negative values of

l2 and l4 have been substituted with zeros.

The second iteration starts with the results of

first iteration. The results are as follows: 

l1=9.26       l2= - 1.335  Y0       

l3=3.422        l4= - 0.734  Y0

If the iterative process is continued, the

results after 10 iterations converge to the

following values:

l1=8.878049      l2=0     

l3=3.536568      l4=0

If the third row of Eq.(47) is replaced with

the first row and the same procedure is

followed, the final results are changed to the

following values:

l1=20.6607      l2= l3= l4=0

Since the results depend on the order of

equations, several results may be obtained by

changing the orders of rows. Then a question

arises that which one is the correct and

reliable solution.
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5.2.5.2. Solution via Sequential Reduced

Linear Equations

In this method Eq.(47), is solved with its

equality sign using any closed form solution.

The results are as follows:

l1=10      l2= - 8      l3= - 2      l4=1

According to negative values of l2 and l3,

the second and third rows and columns of

Eq.(47) should be eliminated. This reduces

the sub-problem to solution of Eq.(48).

(48)

Solution of Eq.(48) results in ë1= - 10 and

ë4= 35. Due to negativity of ë1 , the first row

and column should also be omitted. Then we

will have only one equation and one

unknown. The result is ë4=20. The final

result will be as follows:

l1= l2= l3=0       l4=20

In this method the order of equations does

not affect the results however the results are

neither correct nor reliable.

5.2.5.3. Solution via the Proposed Method

In the proposed method using Eq.(46) a

quadratic programming (QP) problem is

defined as follows:

(49)

By solution of this QP problem unique results

will be obtained as follows:

l1=8       l2=0         l3=3        l4=2

These results are reliable results because they

are unique, they satisfy Eq.(47), and they are

not sensitive to the order of inequalities.

Therefore this proposed method does not

have the drawbacks of the two previous

methods.

Steps of Design Optimization

Eqs.(36) and (46) form the basis for an

improved Optimality Criteria method to

solve the optimization problem posed by (12)

for the design of a frame under seismic

loading. The details of the automated optimal

design procedure are outlined in the

following steps.

1. Set n=0 and adopt an initial set of design

variables Xin (i=1, 2, . . ., n).

2. For the current  Xin calculate the first

(largest) period of the structure.

3. Find the seismic lateral loading according

to Eqs.(13-16). Apply all prescribed

combinations of gravity and seismic loading.

4. For the current Xin analyze the structure

and check for the design constraints. 

5. If there are major violation of constraints

or there is no active constraint, scale the

structure to activate some (at least one) of

constraints . Scaling may be done at member

level for stress constraints and structure level

for displacement constraints [14,15]. Go to

step 2.

6. Establish the gradient vector of the

objective function jZ/jXi (i=1, 2,... ,n).
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7. Select the potentially active constraints.

Calculate their corresponding gradient

vectors  jgj /jXi (for i=1, 2, . . ., n and j=1,
2, . . ., m1).

8. For the current values of Xin establish the

dual sub-problem (46) to solve for the set of

Lagrange multipliers lnj (j=1, 2, . . ., m1).

9. With the current  Xin and lnj values, find

the new set of design variables  Xin+1 .

10. Check for the convergence of the OC

recursive process  . If all Xin+1=Xin

and ln+1j=lnj go to 11; otherwise set

n=n+1 and update (46) for the current Xin

values and return to step 8.

11. Check convergence of the overall design

process. If                  , it is concluded that the

weight of structure from Eq.(1) is the same

for two successive design cycles; terminate

with the minimum weight structure;

otherwise, set n=0 and return to step 2.

6. Examples

In this section, two examples have been

provided. The first example is mainly

provided to show the steps of design

optimization and the second is provided to

show the practicality of the proposed method

in design practice.

7.1 Example 1

Consider the two storey one bay frame of

figure 2. The gravity loading on beams,

including dead and live load is considered to

be 28 KN/m and 8 KN/m respectively. It will

be designed under two load combinations,

i.e. 1) D.L+L.L and  2) 3/4(D.L+0.2L.L+E).

The governing period of the soil T0 is

assumed to be T0= 0.3 Sec.

Step 1. First the members of the frame, are

grouped into four groups as shown in Fig.(2).

The initial cross-sectional areas of all groups

are assumed to be 70 Cm2.

Step 2. The first natural period of the frame is

obtained by Studolla method; T=0.5027 Sec.

Step 3. The total Base Shear and its

distribution at the floor levels are obtained

V=23.46 KN, F1=7.82 KN,  F2=15.64 KN

Step 4. The structure is analyzed under the

two load combinations. The design

constraints are checked; the response ratios

(RR) for all constraints are evaluated. 

Based on response ratios and a proper

constraint selection scheme [15], the

potentially active constraints are selected.

These constraints include the most critical

constraint for each member group.

1 Columns in first floor, Eq.(5), RR=0.397
2 Columns in first floor, Eq.(4), RR=0.675
3 Beam in first floor, Eq.(2), RR=0.655
4 Beam in second floor, Eq.(2), RR=0.574
5 Inter-storey drift in second floor RR=0.21

Step 5. The structure is scaled to activate

some of constraints. Then the process is
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Figure 2: A two-story, one-bay frame under seismic
loading.
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followed from step 2. In the second

constraint check, the first four constraints

became active.

Step 6. The gradient of objective function

(weight)  is obtained in this

step. The index j stands for all members that

are linked to Xi .

Step 7. The gradients of active constraints

jgj/jXi that have been selected in step 4, are

calculated in this stage.

Step 8. The dual sub-problem is established

as in Eq.(46) and solved. The matrix Q and

vector R and the results for the first cycle of

OC are shown below:

Step 9. The new sets of design variables are

updated using Eq.(43). 

X11 =39.51 Cm2,    X21 = 55.98 Cm2,  
X31 = 54.86 Cm2,     X41 = 50.41 Cm2.

Step 10. The convergence criterion,                

is checked; since it is not met, the process

continues again with step 8.

Step 8. The new results of l's are calculated

as follows l={0.5419, 0.5134, 0.4314,
0.4164}

Step 9. The new design variables are

obtained almost the same as previous ones

Xi1= Xi2

Step 10. The convergence criterion for the

OC method has met in the first iteration 

therefore, the process continues 

with the next step.

Step 11. The overall convergence is checked.

Since it is not converged to minimum yet, the

process continues from step 2. 

The above process is continued for two other

iterations. Values of design variables after

design optimization cycles are reported in

Table 1. 

Figure 3, shows the trend of reduction in the

weight of the structure during optimization

process.

7.2.Example 2

In this example an eight-storey, three bay
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Design

Variables 

Initial 

values

After  

Scaling 

After 1st 

iteration

After 2nd 

iteration

A1 (Cm
2
) 70.0 39.94 39.51 39.14 

A2 (Cm
2
) 70.0 55.97 55.98 55.96 

A3 (Cm
2
) 70.0 54.90 54.86 54.81 

A4 (Cm
2
) 70.0 50.44 50.41 50.41 

Weight(Kg) 1201 860 857 855 

Table1: Values of design variables during design optimization process.
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Figure 4: The eight-story, steel braced frame of example 2 under seismic loading.

Figure 3: Reduction in the weight of frame of example 1 during optimization process.
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Figure 5: Reduction in the weight of frame of example 2 during optimization process.

Figure 6: Variation of cross-sectional areas of example 2 during optimization process.
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steel frame as shown in Fig. (4), is

considered. The gravity loading includes

dead load =35 KN/m and live load =10

KN/m.  It is assumed that the governing

period of the soil is T0 =0.3 Sec. Ten groups

of structural elements, as shown in Fig.(4),

have been considered. The optimal design of

structure is sought under three load

combinations. The constraints of this

example are typically the same as in 

Example 1.

The same optimization procedure, as

outlined in example 1, is performed. As

shown in Fig.(5), the optimal design has been

found after three iterations. This takes a few

minutes of CPU time in a Pentium IV

personal computer.

Fig.(6) shows the variation of design

variables during optimization process.

An interesting result arises from the

comparison of variation of first natural

period of the frame and variation of total

lateral seismic loading (i.e. base shear). It can

be observed from Table (2) that during design

optimization the first natural period of the

structure increases and it turns in reduction of

the lateral seismic loading. This in turn,

combined with optimal proportionality of the

structural members, results in doubly

reduction in the weight of the structure.

To inspect what would happen if the

Response Spectrum Analysis (RSA) method

had been used instead of Equivalent Static

Loading (ESL), the structural characteristics

and base shear via RSA have been obtained

at the end of the three optimization stages.

The results have been plotted in Fig.(7). 

It can be seen from this Figure that: during

optimization process the proportionality of

structural members is modified such that the

fist few natural periods of the structure, that

have governing influence on the total base

shear, increase and this results in reduction of

total base shear. The total base shear is

obtained using Complete Quadratic

Combination (CQC) method. Although the

total base shear using RSA method is less

than that of ESL method, but it follows the

same trend in reduction of base shear. 

7. Conclusion

The automated design of steel frames under

seismic loading was formulated in the form

of a standard optimization problem. The

Equivalent Static Loading scheme, was

briefly described and used for determination

of lateral seismic loading. The direct

correspondence of the lateral loading to the

dynamic characteristics of the frame and the

highly iterative nature of the design process

were outlined. The design constraints

including stress, displacement and size

constraints were explained. The implicit form

of constraints was inverted to explicit form

via first order Taylor series expansion. The

Optimality Criteria method of optimization

was briefly described and the drawbacks of

the existing solution schemes for calculation

of Lagrange multipliers were outlined. A

modification/improvement in OC method,

related to the calculation of Lagrange

multipliers was formulated. It was shown

that the proposed method remedies the

existing drawbacks of the algorithm and

results in reliable, unique solution and fast

convergence. The detailed design

optimization was outlined. Two examples

were solved to exhibit the solution procedure

and the applicability of the proposed method

to optimal design of real size structures under

seismic loading. It was found that the

proposed method is fast, reliable and robust.

Example 2, clearly showed that the proposed
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Start Scaling OC1 OC2 

T  (Sec) 0.84704 0.96394 1.00342 1.00336 

Base Shear (KN) 183.308 168.171 163.730 163.736 

Weight  (KN) 189.139 155.329 153.188 153.021 
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Table 2: Variation of first natural period, base shear and the weight of  structure in Example 2

Figure 7: Variation of the first 3 natural periods and base shears  (ESL and RSA methods) of the frame of Example 2.
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algorithm tries to increase the natural periods

of the frame, decrease the lateral forces and

doubly reduce the weight of structure. It was

shown that if Response Spectrum Analysis

method had been used for determining the

seismic effects, similar results to that of

Equivalent Static Loading method would

have been obtained. Therefore, this method is

strongly recommended for the optimization

of highly iterative and complicated design

optimization of structures under seismic

loadings.
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