
1. Introduction

In the recent decade, a new class of numerical
methods, meshless methods (also called mesh-
free methods), have been developing fast [1, 2].
These methods have become an important tool in
computational solid mechanics, owing to their
advantages over the traditional finite element
method (FEM), finite-volume method (FVM),
and finite-difference method (FDM). Meshless
methods rely only on a group of scatter points,
which means not only that the burdensome work
of mesh generation is avoided, but also more
accurate description of irregular complex
geometries can be achieved. Furthermore, the
meshless approximation has higher smoothness,
and no additional post-processing is needed.

In the field of meshless methods for solving
elasticity problems, Krysl and Belytschko [3]
employed Element-Free Galerkin Method
(EFGM) to analyze thin plates; Onate et al. [4]

proposed a stabilization technique by introducing
new terms in both the governing equations and
the traction boundary conditions to solve
elasticity problems; Kwon et al. [5] presented a
least-squares meshfree method for solving linear
elastic problems; Zhang et al. [6] proposed a
meshless weighted least-squares (MWLS)
method, to solve problems of elastostatics; Atluri
et al. proposed a MLPG mixed collocation
method [7] and MLPG mixed finite difference
method [8] for solid mechanics. 

All the above meshless methods can be
categorized into two groups according to their
discretization scheme. The first group is
Galerkin-based meshless methods (GBMMs), of
which the EFGM proposed by Belytschko in
1994 [9] is a famous representative. In GBMMs,
the highest order of derivatives is lowered by
using a weak form of the original partial
differential equations (PDEs). The accuracy of
GBMMs is high, and good stability can always
be obtained. The main shortcoming of GBMMs
is that the integrals in the weak form must be
evaluated properly. One way of evaluating
integrals is to use a background mesh, which
makes the method not truly meshless; another is
to use nodal integration [10], which results in
significant errors because the divergence theorem
used in the establishment of the weak form
demands accurate integration [11]. In addition,
because meshless shape functions are too
complex to be expressed in closed form, a
delicate background mesh and a large number of
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quadrature points are always employed, which
decreases the efficiency seriously. As a
consequence, GBMMs are much more
computationally expensive than the FEM.

The other group of meshless methods is built
on collocation schemes. The SPH, FPM, DAM,
least-square collocation meshless method [12],
point weighted least-square (PWLS) method
[13], and radial basis function (RBF) collocation
methods [14–17] all belong to this group. These
methods are very efficient and easy to program,
but they usually suffer from poor stability, and
the accuracy often goes down near the boundary.

The universal law of least squares can also be
used for discretization. In fact, it has been
introduced into the FEM successfully [18]. A
truly meshless method based on the least-squares
approach, the collocation discrete least-squares
(CDLS) method, was proposed to solve Poisson’s
equation [19] and free surface seepage problem
[20] and also was presented for error estimation
and adaptive refinement [21]. In this paper CDLS
method, already used for the solution of
hyperbolic problems, is extended for solving
elasticity problems. In the present CDLS method,
the problem domain is discretized by distributed
field nodes. The field nodes are used to construct
the trial functions by employing the moving
least-squares interpolant. Some collocation
points that are independent of the field nodes are
used to form the total residuals of the problem.
The least-squares technique is used to obtain the
solution of the problem by minimizing the
summation of the residuals for the collocation
points. Because of using the least-squares
technique and more collocation points the CDLS
method is not bothered by instability as
collocation-based meshless methods. 

In this article, the CDLS method is extended
to solve elasticity problems. Constructing of
moving least square shape functions is explained
in Section 2; discretization of equilibrium
equations in solid mechanics using collocation
discrete least square (CDLS) method is described
in Section 3; numerical examples are
demonstrated in Section 4; and some concluding
remarks are presented in Section 5.

2. Moving least square shape functions

Among the available meshless approximation
schemes, the moving least squares (MLS)
method [22] is generally considered to be one of
the best methods to interpolate random data with
a reasonable accuracy, because of its
completeness, robustness and continuity[7, 23].
With the MLS interpolation, the unknown
function is approximated by:

(1)

Where PT(x) is a polynomial basis in the space
coordinates, and m is the total number of the
terms in the basis. For a 2D problem we can
specify P = [1  x  y  x2 x y  y2 ] for m=6.  a(x)
is the vector of coefficients and can be obtained
by minimizing a weighted discrete L2 norm as
follows:

(2)

The weight function is usually
built in such a way that it takes a unit value in the
vicinity of the point j where the function and its
derivatives are to be computed and vanishes
outside a region surrounding the point  xj . In
this research the cubic spline weight function is
considered as follows:

(3)

Where and is the size of
influence domain of point .

Minimization of equation (2) leads to

(4)

where

(5)

(6)  
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form of equation (7) yields to equation (8)

(7)

(8)

Contains the shape functions of nodes
at point (X) witch are called moving least square
(MLS) shape functions.

3. Collocation Discrete least square (CDLS)
method

Consider the following (partial) differential
equation

(9)

subject to appropriate Drichlet and Neumann
boundaries.

(10)

(11)

Where A and B are (partial) differential
operators, and f represents external forces or
source term on the problem domain.

Upon discretization of the problem domain
and its boundaries using Equation (7) defined as
the residual of partial differential equation at a
typical collocation point k is:

(12)

the residual of Neumann boundary condition at
typical collocation k on the Neumann boundary
can also be written as:

(13)

and finally the residual of Drichlet boundary
condition at nodes on the Drichlet boundary
could be stated by:

(14)

where n is the total number of nodes, is

the internal collocation points, Mt is the
collocation points on the Neumann boundary, Mu

is the  collocation points on the Dirichlet
boundary and M is the total number of
collocation points. A penalty approach is used to
form the total residual of the problem defined as:

(15)

(16)

Where at and au are penalty coefficients for
Neumann and Drichlet boundary conditions
respectively. To impose the boundary conditions
exactly, the penalty factor must be infinite, which
is not possible in practical numerical analysis
[24]. Therefore, in the penalty method boundary
conditions can not be satisfied exactly, but only
approximately. In general, the use of a larger
penalty factor will lead to better enforcement of
the constraint. On the other hand, if the penalty
factor is too small, the constraints will not be
properly enforced, but if it is too large, numerical
problems will be encountered. A compromise
should, therefore, be reached. Penalty
coefficients set to be 108 in this research. 

Minimization of the functional with respect to
nodal parameters leads to the
following system of equations.

(17)
where
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the stiffness matrix K in Eq. (17) is square
(NxN) and symmetric. Therefore, the final
system of equations can be solved directly via
efficient solvers.

4. Numerical examples

In this section, some 2D numerical examples,
which are solved by the CDLS method, are
presented. The examples include: 1) the patch
test, 2) a cantilever beam under end point load,
and 3) an infinite plate with a circular hole under
uniaxial load. Problems 2 and 3 are solved using
regular nodal distributions. For information about
the influence of the irregular nodal configuration
on the CDLS performance see [26].

4.1 The Patch Test

The standard patch test: a rectangle under
uniform tension load (see Fig. 1) is solved as the
first example. The material parameters are as
follows: the Young’s modulus E = 1000.0, and
the Poisson’s ratio v = 0.3. Plane stress condition
is assumed for the 2D problem and 9 nodes are
used. Two nodal configurations are used for the
testing: one is regular, and another is irregular, as
shown in Fig.1. The proper displacement
constraints are applied to the bottom edge.

The simulation results show a linear
displacement on the lateral edges, and constant
displacement on the top edge; the normal stress in
the loading direction is constant and there is no
shear stress in the solution domain.

4.2 Cantilever Beam

In the second example, we solve a cantilever
beam under a point load at the end, as shown in
Fig.2. For this problem, the exact stress and

displacement solution for plane stress is given in
Timoshenko and Goodier [25] as

(20)

and

(21)

where the moment of inertia for a
beam with rectangular cross-section and unit
thickness. The problem is solved using the CDLS
method under plane stress condition with the
following constants: P = 1, E = 1000, c = 2, L =
24, and v = 0.3.

Regular uniform nodal configurations with
nodal distances, d, of 1.0, 0.5, and 0.25 are used.
The corresponding numbers of nodes are 125,
441, and 1649, respectively. and the
corresponding numbers of collocation points are
221, 825, and 3185, respectively. The nodal
configurations are shown in Fig.3. This problem
is simulated using the MLS with the second order
polynomial basis. Fig.4 shows the vertical
displacement along the central line of the beam
for the nodal configuration with d = 1.0. The
simulation prediction agrees with the analytical
solution very well. Fig.5 shows the shear stress
distribution of cantilever beam at x=L/2 for the
three nodal configurations with d = 1.0, d = 0.5
and d = 0.25 and a very good agreement with the
analytical solution is obtained. The Contours of

stress and the vertical displacement for the
nodal configuration with d = 0.25 are shown in
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Figure 1 The patch test: a rectangle under uniform
tension. The two nodal configurations

Figure 2 A cantilever beam under a point load at
the end
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Fig.6 and 7 respectively. The convergence rate is
studied with three nodal configurations (d =1.0,
0.5, and 0.25). The following H1 error norm are
used for showing the convergence rate in Fig.8.

(22)

Where N is number of nodes. The results clearly
show that a stable convergence rate is obtained
for the present CDLS method. 

4.3  Infinite Plate with a Circular Hole

Finally, we show the computational results of
an infinite plate with a circular hole subjected to
a uniaxial traction P at infinity as shown in Fig.9.
The exact solutions for stresses and
displacements for this problem are

(23) 

and

(24)

respectively. In the above equations, G is the
shear modulus and k=(3-v)/(1+v) with v the
Poisson’s ratio. Due to symmetry, only the upper
right square quadrant of the plate is modeled [see
Fig. 9]. The edge length of the square is 5a, with
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Figure 3 The nodal configuration of the cantilever
beam, a) 125 nodes and 221 collocation points

b) 441 nodes and 825 collocation points c) 1649 nodes
and 3185 collocation points

Figure 4 The vertical displacement of the
cantilever beam under the end load

Figure 5 The shear stress distribution of cantilever
beam at x=L/2
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a being the radius of the circular hole. Symmetry
boundary conditions are imposed on the left and
bottom edges and the tractions obtained from the
analytical solution [Eq. 23] are applied to the top
and right edges. 

The problem is solved using the CDLS
method, under a plane stress condition, with the
following constants: P =1, E = 1000, and v=0.3.
Three nodal configurations with 183, 318 and
633 nodes, respectively, are used. The nodal

configurations are shown in Figure 10. The MLS
with quadratic basis is used in the simulation. The
horizontal displacement ux along the bottom edge
(y = 0), and the stress component along the
left edge (x = 0) are shown in Figure 11 and
Figure 12, respectively. Compared with the
analytical solutions, good agreements are
obtained for both the displacements and stresses.

Fig.13 shows convergence rate with three
nodal configurations (n =183, 318, and 633). The
following L2 norm of error is used for
representing the convergence rate of
displacements and    stress separately:

(25) 

Where ei is the difference between numerical
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22
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Figure 6 Contours of vertical displacement (Regular
grid of 1649 nodes)

Figure 7 Contours of   stress (Regular grid of
1649 nodes)

xσ

Figure 10 The nodal configurations of the infinite
plate with a circular hole

a) 183 nodes and 335 collocation points b) 318 nodes
and 598 collocation points c) 633 nodes and 1215

collocation points

 

 

Figure 8 The convergence rate in the cantilever beam
under the end load

Figure 9 An infinite plate with a circular hole under a
uniaxial load
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and exact solution in node i. A stable and
monotonic convergence rate is observed for the
problem.

This problem is also solved for the special case
where the collocation points are placed on the
position of main nodes. Distribution of nodes
with 183 nodes and collocations is shown in
Figure 14. For this case H1 error norm [Eq. 22] is
1.11. By increasing number of collocations to
335 (see Figure 10-a), H1 norm decreases to 0.79.
For additional information about effect of
collocation points refer to [26]. Finally, the CDLS method is compared with

FPM. FPM results are taken from [4]. Nodal
configurations for CDLS and FPM are shown in
Figure 15 and 16, respectively. The exact stress
component along the left edge (x = 0) is
compared with corresponding results from both
CDLS and FPM in Figure 17. Results shows that
present method possesses good accuracy in
comparison with FPM method.

5. Conclusion

A truly meshless approach, collocation
discrete least-squares (CDLS) method, is
extended to solve elasticity problems. In the
CDLS method, the problem domain is discretized
by distributed field nodes. The field nodes are
used to construct the trial functions. The moving
least-squares interpolant is employed to construct

xσ

15Mohammad Naisipour, Mohammad Hadi Afshar, Behrooz Hassani, Ali Rahmani Firoozjaee

Figure 11 The horizontal displacement along y=0 for

the three nodal configurations

Figure 12 The normal stress along x = 0 for the

three nodal configurations
xσ

Figure 13 The convergence rate of the infinite plate

with a circular hole. a) H1 error norm and b) L2 error

norm of displacements and normal stress   

 [
 D

ow
nl

oa
de

d 
fr

om
 e

da
ri

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
30

 ]
 

                             7 / 10

https://edari.iust.ac.ir/ijce/article-1-191-en.html


the trial functions. Some collocation points that
are independent of the field nodes are used to
form the total residuals of the problem. The least-
squares technique is used to obtain the solution of
the problem by minimizing the summation of the
residuals for the collocation points. The final
coefficient matrix is symmetric and then can be
solved directly via efficient solvers. The
boundary conditions are easily enforced by
penalty method. The present CDLS method does
not require any mesh so it is a truly meshless
method. Numerical examples are studied in
detail, which show that the present method is
stable and possesses good accuracy, high

convergence rate and high efficiency. It is also
shown that CDLS method has good accuracy in
comparison with FPM method. All these
advantages of the CDLS emphasizes on its ability
as a useful meshless method for the solution of
elasticity problems. 
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